Approximate Solutions of the One-Dimensional Fisher–Kolmogorov–Petrovskii– Piskunov Equation with Quasilocal Competitive Losses

Dades bibliogràfiques
Parent link:Russian Physics Journal
Vol. 60, iss. 9.— 2018.— [P. 1461-1468]
Autor principal: Shapovalov A. V. Aleksandr Vasilyevich
Autor corporatiu: Национальный исследовательский Томский политехнический университет Исследовательская школа физики высокоэнергетических процессов
Sumari:Title screen
The modified Fisher–Kolmogorov–Petrovskii–Piskunov equation with quasilocal quadratic competitive losses and variable coefficients in the small nonlocality parameter approximation is reduced to an equation with a nonlinear diffusion coefficient. Within the framework of a perturbation method, equations are obtained for the first terms of an asymptotic expansion of an approximate solution of the reduced equation. Particular solutions in separating variables are considered for the equations determining the first terms of the asymptotic series. The problem is reduced to an elliptic integral and one linear, homogeneous ordinary differential equation.
Режим доступа: по договору с организацией-держателем ресурса
Publicat: 2018
Matèries:
Accés en línia:https://doi.org/10.1007/s11182-018-1236-6
Format: Electrònic Capítol de llibre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=666949

MARC

LEADER 00000naa0a2200000 4500
001 666949
005 20250227155900.0
035 |a (RuTPU)RU\TPU\network\38153 
090 |a 666949 
100 |a 20220208d2018 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Approximate Solutions of the One-Dimensional Fisher–Kolmogorov–Petrovskii– Piskunov Equation with Quasilocal Competitive Losses  |f A. V. Shapovalov 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 16 tit.] 
330 |a The modified Fisher–Kolmogorov–Petrovskii–Piskunov equation with quasilocal quadratic competitive losses and variable coefficients in the small nonlocality parameter approximation is reduced to an equation with a nonlinear diffusion coefficient. Within the framework of a perturbation method, equations are obtained for the first terms of an asymptotic expansion of an approximate solution of the reduced equation. Particular solutions in separating variables are considered for the equations determining the first terms of the asymptotic series. The problem is reduced to an elliptic integral and one linear, homogeneous ordinary differential equation. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Russian Physics Journal 
463 |t Vol. 60, iss. 9  |v [P. 1461-1468]  |d 2018 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a Fisher–Kolmogorov–Petrovskii–Piskunov equation 
610 1 |a quasilocal competitive losses 
610 1 |a perturbation method 
610 1 |a separation of variables 
700 1 |a Shapovalov  |b A. V.  |c mathematician  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1949-  |g Aleksandr Vasilyevich  |3 (RuTPU)RU\TPU\pers\31734 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа физики высокоэнергетических процессов  |c (2017- )  |3 (RuTPU)RU\TPU\col\23551 
801 2 |a RU  |b 63413507  |c 20220208  |g RCR 
856 4 |u https://doi.org/10.1007/s11182-018-1236-6 
942 |c CF