Approximate Solutions of the One-Dimensional Fisher–Kolmogorov–Petrovskii– Piskunov Equation with Quasilocal Competitive Losses
| Parent link: | Russian Physics Journal Vol. 60, iss. 9.— 2018.— [P. 1461-1468] |
|---|---|
| Autor principal: | |
| Autor corporatiu: | |
| Sumari: | Title screen The modified Fisher–Kolmogorov–Petrovskii–Piskunov equation with quasilocal quadratic competitive losses and variable coefficients in the small nonlocality parameter approximation is reduced to an equation with a nonlinear diffusion coefficient. Within the framework of a perturbation method, equations are obtained for the first terms of an asymptotic expansion of an approximate solution of the reduced equation. Particular solutions in separating variables are considered for the equations determining the first terms of the asymptotic series. The problem is reduced to an elliptic integral and one linear, homogeneous ordinary differential equation. Режим доступа: по договору с организацией-держателем ресурса |
| Publicat: |
2018
|
| Matèries: | |
| Accés en línia: | https://doi.org/10.1007/s11182-018-1236-6 |
| Format: | Electrònic Capítol de llibre |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=666949 |
MARC
| LEADER | 00000naa0a2200000 4500 | ||
|---|---|---|---|
| 001 | 666949 | ||
| 005 | 20250227155900.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\38153 | ||
| 090 | |a 666949 | ||
| 100 | |a 20220208d2018 k||y0rusy50 ba | ||
| 101 | 0 | |a eng | |
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Approximate Solutions of the One-Dimensional Fisher–Kolmogorov–Petrovskii– Piskunov Equation with Quasilocal Competitive Losses |f A. V. Shapovalov | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 320 | |a [References: 16 tit.] | ||
| 330 | |a The modified Fisher–Kolmogorov–Petrovskii–Piskunov equation with quasilocal quadratic competitive losses and variable coefficients in the small nonlocality parameter approximation is reduced to an equation with a nonlinear diffusion coefficient. Within the framework of a perturbation method, equations are obtained for the first terms of an asymptotic expansion of an approximate solution of the reduced equation. Particular solutions in separating variables are considered for the equations determining the first terms of the asymptotic series. The problem is reduced to an elliptic integral and one linear, homogeneous ordinary differential equation. | ||
| 333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
| 461 | |t Russian Physics Journal | ||
| 463 | |t Vol. 60, iss. 9 |v [P. 1461-1468] |d 2018 | ||
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a Fisher–Kolmogorov–Petrovskii–Piskunov equation | |
| 610 | 1 | |a quasilocal competitive losses | |
| 610 | 1 | |a perturbation method | |
| 610 | 1 | |a separation of variables | |
| 700 | 1 | |a Shapovalov |b A. V. |c mathematician |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences |f 1949- |g Aleksandr Vasilyevich |3 (RuTPU)RU\TPU\pers\31734 | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |b Исследовательская школа физики высокоэнергетических процессов |c (2017- ) |3 (RuTPU)RU\TPU\col\23551 |
| 801 | 2 | |a RU |b 63413507 |c 20220208 |g RCR | |
| 856 | 4 | |u https://doi.org/10.1007/s11182-018-1236-6 | |
| 942 | |c CF | ||