Quantum imaging with incoherently scattered light from a free-electron laser

Bibliographic Details
Parent link:Nature Physics
Vol. 14, iss. 2.— 2018.— [P. 126-129]
Corporate Author: Национальный исследовательский Томский политехнический университет Инженерная школа неразрушающего контроля и безопасности Центр промышленной томографии Международная научно-образовательная лаборатория неразрушающего контроля
Other Authors: Schneider R. Raimund, Mehringer T. Thomas, Mercurio G. Giuseppe, Wenthaus L. Lukas, Classen A. Anton, Brenner G. Gunter, Gorobtsov O. Oleg, Benz A. Adrian, Bhatti D. Daniel, Bocklage L. Lars, Fischer B. Birgit, Lazarev S. V. Sergey Vladimirovich
Summary:Title screen
The advent of accelerator-driven free-electron lasers (FEL) has opened new avenues for high-resolution structure determination via diffraction methods that go far beyond conventional X-ray crystallography methods1, 2, 3, 4, 5, 6, 7, 8, 9, 10. These techniques rely on coherent scattering processes that require the maintenance of first-order coherence of the radiation field throughout the imaging procedure. Here we show that higher-order degrees of coherence, displayed in the intensity correlations of incoherently scattered X-rays from an FEL, can be used to image two-dimensional objects with a spatial resolution close to or even below the Abbe limit. This constitutes a new approach towards structure determination based on incoherent processes11, 12, including fluorescence emission or wavefront distortions, generally considered detrimental for imaging applications. Our method is an extension of the landmark intensity correlation measurements of Hanbury Brown and Twiss13 to higher than second order, paving the way towards determination of structure and dynamics of matter in regimes where coherent imaging methods have intrinsic limitations 14.
Published: 2018
Subjects:
Online Access:https://doi.org/10.1038/nphys4301
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=666942

MARC

LEADER 00000naa0a2200000 4500
001 666942
005 20250227150135.0
035 |a (RuTPU)RU\TPU\network\38146 
035 |a RU\TPU\network\38142 
090 |a 666942 
100 |a 20220208d2018 k||y0rusy50 ba 
101 0 |a eng 
102 |a GB 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Quantum imaging with incoherently scattered light from a free-electron laser  |f R. Schneider, T. Mehringer, G. Mercurio [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 27 tit.] 
330 |a The advent of accelerator-driven free-electron lasers (FEL) has opened new avenues for high-resolution structure determination via diffraction methods that go far beyond conventional X-ray crystallography methods1, 2, 3, 4, 5, 6, 7, 8, 9, 10. These techniques rely on coherent scattering processes that require the maintenance of first-order coherence of the radiation field throughout the imaging procedure. Here we show that higher-order degrees of coherence, displayed in the intensity correlations of incoherently scattered X-rays from an FEL, can be used to image two-dimensional objects with a spatial resolution close to or even below the Abbe limit. This constitutes a new approach towards structure determination based on incoherent processes11, 12, including fluorescence emission or wavefront distortions, generally considered detrimental for imaging applications. Our method is an extension of the landmark intensity correlation measurements of Hanbury Brown and Twiss13 to higher than second order, paving the way towards determination of structure and dynamics of matter in regimes where coherent imaging methods have intrinsic limitations 14. 
461 |t Nature Physics 
463 |t Vol. 14, iss. 2  |v [P. 126-129]  |d 2018 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a imaging and sensing 
610 1 |a quantum metrology 
610 1 |a quantum optics 
610 1 |a X-rays 
610 1 |a изображения 
610 1 |a квантовая оптика 
610 1 |a визуализация 
610 1 |a свободные электроны 
701 1 |a Schneider  |b R.  |g Raimund 
701 1 |a Mehringer  |b T.  |g Thomas 
701 1 |a Mercurio  |b G.  |g Giuseppe 
701 1 |a Wenthaus  |b L.  |g Lukas 
701 1 |a Classen  |b A.  |g Anton 
701 1 |a Brenner  |b G.  |g Gunter 
701 1 |a Gorobtsov  |b O.  |g Oleg 
701 1 |a Benz  |b A.  |g Adrian 
701 1 |a Bhatti  |b D.  |g Daniel 
701 1 |a Bocklage  |b L.  |g Lars 
701 1 |a Fischer  |b B.  |g Birgit 
701 1 |a Lazarev  |b S. V.  |c physicist  |c engineer at Tomsk Polytechnic University  |f 1984-  |g Sergey Vladimirovich  |3 (RuTPU)RU\TPU\pers\35210 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа неразрушающего контроля и безопасности  |b Центр промышленной томографии  |b Международная научно-образовательная лаборатория неразрушающего контроля  |3 (RuTPU)RU\TPU\col\19961 
801 2 |a RU  |b 63413507  |c 20220208  |g RCR 
856 4 |u https://doi.org/10.1038/nphys4301 
942 |c CF