N =4 ℓ-conformal Galilei superalgebras inspired by D(2, 1; α) supermultiplets

書誌詳細
Parent link:Journal of High Energy Physics
Vol. 2017, № 9.— 2017.— [131, 9 p.]
第一著者: Galajinsky A. V. Anton Vladimirovich
その他の著者: Krivonos S. O. Sergey Olegovich
要約:Title screen
N = 4 supersymmetric extensions of the ℓ-conformal Galilei algebra are constructed by properly extending the Lie superalgebra associated with the most general N = 4 superconformal group in one dimension D(2,1;α). If the acceleration generators in the superalgebra form analogues of the irreducible (1, 4, 3)-, (2, 4, 2)-, (3, 4, 1)-, and (4, 4, 0)-supermultiplets of D(2, 1; α), the parameter α turns out to be constrained by Jacobi identities. In contrast, if the tower of the acceleration generators resembles a component decomposition of a generic real superfield, which is a reducible representation of D(2, 1; α), α remains arbitrary. An N = 4 ℓ-conformal Galilei superalgebra recently proposed in [Phys. Lett. B 771 (2017) 401] is shown to be a particular instance of a more general construction in this work.
言語:英語
出版事項: 2017
主題:
オンライン・アクセス:https://doi.org/10.1007/JHEP09(2017)131
フォーマット: 電子媒体 図書の章
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=666891