Crowd science for hybrid AI applications
| Parent link: | Service-Oriented System Engineering (SOSE): Proceedings 15th IEEE International conference, 23-26 August 2021, Virtual, Oxford. [P. 172-175].— , 2021 |
|---|---|
| Egile nagusia: | Taran Е. А. Ekaterina Aleksandrovna |
| Erakunde egilea: | Национальный исследовательский Томский политехнический университет Школа базовой инженерной подготовки Отделение социально-гуманитарных наук |
| Beste egile batzuk: | Malanina V. A. Veronika Anatolievna, Casati F. Fabio |
| Gaia: | Title screen Most AI applications are hybrid, that is, employ machines to make inferences but can fall back on humans when the algorithm is not confident enough. This is true for a wide class of applications ranging from self-driving cars to decision making and process automation in enterprise AI. In this WIP paper we present our vision and progress towards an AI and crowd service that trains, assess and refines ML systems intended to be used in hybrid context. We specifically focus on crowdsourcing as a mean to assist ML algorithm development, and on the different ways in which crowd and machine can interact before, during and after the training process in a synergic way that goes well beyond the 'traditional' application of crowd workers to provide data labels for ML training. Режим доступа: по договору с организацией-держателем ресурса |
| Hizkuntza: | ingelesa |
| Argitaratua: |
2021
|
| Gaiak: | |
| Sarrera elektronikoa: | https://doi.org/10.1109/SOSE52839.2021.00027 |
| Formatua: | Baliabide elektronikoa Liburu kapitulua |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=666777 |
Antzeko izenburuak
Crowd-Machine Collaboration for Item Screening
Argitaratua: (2018)
Argitaratua: (2018)
Novel hybrid machine learning optimizer algorithms to prediction of fracture density by petrophysical data
Argitaratua: (2021)
Argitaratua: (2021)
Predicting shear wave velocity from conventional well logs with deep and hybrid machine learning algorithms
Argitaratua: (2023)
Argitaratua: (2023)
Blended learning in higher Education
Argitaratua: (2021)
Argitaratua: (2021)
The New Meaning of Hybrid Learning During the Pandemic
Argitaratua: (2022)
Argitaratua: (2022)
Hybrid machine learning algorithms to predict condensate viscosity in the near wellbore regions of gas condensate reservoirs
Argitaratua: (2021)
Argitaratua: (2021)
Predicting Formation Pore-Pressure from Well-Log Data with Hybrid Machine-Learning Optimization Algorithms
Argitaratua: (2021)
Argitaratua: (2021)
Communication features of the hybrid learning
nork: Tukhvatulina L. R. Liliya Ravilevna
Argitaratua: (2016)
nork: Tukhvatulina L. R. Liliya Ravilevna
Argitaratua: (2016)
Synthesis of a hybrid underlying surface classifier based on fuzzy logic using current consumption of mobile robot motion
nork: Belyaev A. S. Aleksandr Sergeevich
Argitaratua: (2024)
nork: Belyaev A. S. Aleksandr Sergeevich
Argitaratua: (2024)
Robust computational approach to determine the safe mud weight window using well-log data from a large gas reservoir
Argitaratua: (2022)
Argitaratua: (2022)
Explainable AI: Foundations, Methodologies and Applications
Argitaratua: (2023)
Argitaratua: (2023)
Determination of bubble point pressure & oil formation volume factor of crude oils applying multiple hidden layers extreme learning machine algorithms
Argitaratua: (2021)
Argitaratua: (2021)
COVID-19 image classification using deep features and fractional-order marine predators algorithm
Argitaratua: (2020)
Argitaratua: (2020)
Machine Learning Clustering of Reservoir Heterogeneity with Petrophysical and Production Data
Argitaratua: (2020)
Argitaratua: (2020)
Artificial Intelligence for Science (AI4S) Frontiers and Perspectives Based on Parallel Intelligence /
nork: Miao, Qinghai, et al.
Argitaratua: (2024)
nork: Miao, Qinghai, et al.
Argitaratua: (2024)
Интеграция промысловых данных и применение методов машинного обучения для оценки состояния призабойной зоны карбонатных коллекторов
nork: Соромотин А. В. Андрей Витальевич
Argitaratua: (2025)
nork: Соромотин А. В. Андрей Витальевич
Argitaratua: (2025)
Hybrid Machine-Learning Model for Accurate Prediction of Filtration Volume in Water-Based Drilling Fluids
Argitaratua: (2024)
Argitaratua: (2024)
Feature selection algorithm based on PDF/PMF area difference
Argitaratua: (2020)
Argitaratua: (2020)
Social Impact of AI: Research, Diversity and Inclusion Frameworks International Workshop, SIAI 2025, Philadelphia, PA, USA, March 1, 2025, Proceedings /
Argitaratua: (2025)
Argitaratua: (2025)
Modern Approaches in Machine Learning and Cognitive Science: A Walkthrough Latest Trends in AI, Volume 2 /
Argitaratua: (2021)
Argitaratua: (2021)
Predicting oil flow rate through orifice plate with robust machine learning algorithms
Argitaratua: (2021)
Argitaratua: (2021)
Использование облачных технологий машинного обучения в социальных исследованиях с ограниченным финансированием
nork: Романчуков С. В.
Argitaratua: (2019)
nork: Романчуков С. В.
Argitaratua: (2019)
The New Algorithms Of Machine Learning For Education People With Special Needs
nork: Khaperskaya A. V. Alena Vasilievna
Argitaratua: (2018)
nork: Khaperskaya A. V. Alena Vasilievna
Argitaratua: (2018)
A robust approach to pore pressure prediction applying petrophysical log data aided by machine learning techniques
Argitaratua: (2022)
Argitaratua: (2022)
Машинное обучение как средство интеллектуальной оценки компетенций в процессе самообучения
nork: Хаперская А. В. Алена Васильевна
Argitaratua: (2021)
nork: Хаперская А. В. Алена Васильевна
Argitaratua: (2021)
Сравнительный анализ моделей классификации для определения качества вина по его химическому составу
Argitaratua: (2023)
Argitaratua: (2023)
Boosting Atomic Orbit Search Using Dynamic-Based Learning for Feature Selection
Argitaratua: (2021)
Argitaratua: (2021)
Development of the video stream object detection algorithm (VSODA) with tracking
Argitaratua: (2019)
Argitaratua: (2019)
Advancement of artificial intelligence applications in hydrocarbon well drilling technology: A review
Argitaratua: (2025)
Argitaratua: (2025)
Carbon Dioxide Storage and Cumulative Oil Production Predictions in Unconventional Reservoirs Applying Optimized Machine-Learning Models
Argitaratua: (2025)
Argitaratua: (2025)
Нейросетевые технологии прогнозирования и управления электропотреблением в энергетических системах с использованием генетического метода
Argitaratua: (2025)
Argitaratua: (2025)
Прогнозирование притока после гидравлического разрыва нефтяного пласта при помощи искусственного интеллекта
nork: Ямкин М. А. Максим Александрович
Argitaratua: (2025)
nork: Ямкин М. А. Максим Александрович
Argitaratua: (2025)
Machine Intelligence and Data Science Applications Proceedings of MIDAS 2022 /
Argitaratua: (2023)
Argitaratua: (2023)
Machine Intelligence and Data Science Applications Proceedings of MIDAS 2021 /
Argitaratua: (2022)
Argitaratua: (2022)
AI and the Boardroom Insights into Governance, Strategy, and the Responsible Adoption of AI /
nork: Sharma, Rohan
Argitaratua: (2024)
nork: Sharma, Rohan
Argitaratua: (2024)
Robust machine-learning model for prediction of carbon dioxide adsorption on metal-organic frameworks
Argitaratua: (2025)
Argitaratua: (2025)
Эффективность методики подбора роторно-управляемых систем на основе алгоритма машинного обучения Random Forest Classifier
nork: Никишин В. В. Вячеслав Валерьевич
Argitaratua: (2024)
nork: Никишин В. В. Вячеслав Валерьевич
Argitaratua: (2024)
Innovation in Agriculture with IoT and AI
nork: Satapathy, Suchismita, et al.
Argitaratua: (2022)
nork: Satapathy, Suchismita, et al.
Argitaratua: (2022)
Metaheuristics in Machine Learning: Theory and Applications
Argitaratua: (2021)
Argitaratua: (2021)
Cellular Learning Automata: Theory and Applications
nork: Vafashoar, Reza, et al.
Argitaratua: (2021)
nork: Vafashoar, Reza, et al.
Argitaratua: (2021)
Antzeko izenburuak
-
Crowd-Machine Collaboration for Item Screening
Argitaratua: (2018) -
Novel hybrid machine learning optimizer algorithms to prediction of fracture density by petrophysical data
Argitaratua: (2021) -
Predicting shear wave velocity from conventional well logs with deep and hybrid machine learning algorithms
Argitaratua: (2023) -
Blended learning in higher Education
Argitaratua: (2021) -
The New Meaning of Hybrid Learning During the Pandemic
Argitaratua: (2022)