Bifurcated Halogen Bonding Involving Diaryliodonium Cations as Iodine(III)-Based Double-[sigma]-Hole Donors

Bibliographic Details
Parent link:Crystal Growth & Design
Vol. 21, iss. 2.— 2021.— [Р. 1136-1147]
Corporate Author: Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий
Other Authors: Aliyarova I. S. Irina Sergeevna, Ivanov D. M. Daniil Mikhaylovich, Soldatova N. S. Nataliya Sergeevna, Novikov A. S. Aleksandr Sergeevich, Postnikov P. S. Pavel Sergeevich, Yusubov M. S. Mekhman Suleiman-Ogly (Suleimanovich), Kukushkin V. Yu. Vadim Yurjevich
Summary:Title screen
Three diaryliodonium tetrachloroaurates(III), [Ar1IAr2][AuCl4] (Ar1/Ar2=Ph/Ph (1), Ph/Mes (2), o-(C6H4)2 (3)), were obtained as solids (62-80%) by the metathetical reaction of [Ar1IAr2](CF3CO2) and H[AuCl4]. In particular, the single-crystal X-ray diffraction studies of 1-3 revealed three-center bifurcated C-I···(Cl-Au-Cl) halogen bond (XB) and the more conventional interionic two-center C-I···Cl-Au XB. An XB with the iodine(III) center of a diaryliodonium cation can be formed even when (C-I···X) is much less than 180° (decrease by 55° in our experiments). A Cambridge Structural Database search and processing revealed other examples of bifurcated XBs involving diaryliodonium species. All recognized bifurcated XBs with diaryliodonium cations were classified and divided into two categories: “bifurcated plus two-center” and “double-bifurcated” structural types. The nature and energies of the XB interactions were studied by density functional theory (DFT) calculations and a topological analysis of the electron density distribution in the framework of the quantum theory of atoms in molecules (QTAIM) at the [omega]B97XD/DZP-DKH level of theory. The nature of all XB contacts is purely noncovalent, and the total energy of bifurcated XBs is generally ca. 50% higher than the energy of two-center XBs.
Language:English
Published: 2021
Subjects:
Online Access:https://doi.org/10.1021/acs.cgd.0c01463
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=666337

MARC

LEADER 00000naa0a2200000 4500
001 666337
005 20250214163745.0
035 |a (RuTPU)RU\TPU\network\37541 
035 |a RU\TPU\network\37518 
090 |a 666337 
100 |a 20211217d2021 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Bifurcated Halogen Bonding Involving Diaryliodonium Cations as Iodine(III)-Based Double-[sigma]-Hole Donors  |f I. S. Aliyarova, D. M. Ivanov, N. S. Soldatova [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 16 tit.] 
330 |a Three diaryliodonium tetrachloroaurates(III), [Ar1IAr2][AuCl4] (Ar1/Ar2=Ph/Ph (1), Ph/Mes (2), o-(C6H4)2 (3)), were obtained as solids (62-80%) by the metathetical reaction of [Ar1IAr2](CF3CO2) and H[AuCl4]. In particular, the single-crystal X-ray diffraction studies of 1-3 revealed three-center bifurcated C-I···(Cl-Au-Cl) halogen bond (XB) and the more conventional interionic two-center C-I···Cl-Au XB. An XB with the iodine(III) center of a diaryliodonium cation can be formed even when (C-I···X) is much less than 180° (decrease by 55° in our experiments). A Cambridge Structural Database search and processing revealed other examples of bifurcated XBs involving diaryliodonium species. All recognized bifurcated XBs with diaryliodonium cations were classified and divided into two categories: “bifurcated plus two-center” and “double-bifurcated” structural types. The nature and energies of the XB interactions were studied by density functional theory (DFT) calculations and a topological analysis of the electron density distribution in the framework of the quantum theory of atoms in molecules (QTAIM) at the [omega]B97XD/DZP-DKH level of theory. The nature of all XB contacts is purely noncovalent, and the total energy of bifurcated XBs is generally ca. 50% higher than the energy of two-center XBs. 
338 |b Российский фонд фундаментальных исследований  |d 20-33-90029 
338 |b Российский научный фонд  |d 20-13-00144 
461 |t Crystal Growth & Design 
463 |t Vol. 21, iss. 2  |v [Р. 1136-1147]  |d 2021 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a галогенные связи 
610 1 |a катионы 
610 1 |a доноры 
610 1 |a йод 
610 1 |a монокристаллы 
610 1 |a электронная плотность 
701 1 |a Aliyarova  |b I. S.  |c chemist  |c Junior Researcher of the Tomsk Polytechnic University  |f 1993-  |g Irina Sergeevna  |3 (RuTPU)RU\TPU\pers\47462  |9 22978 
701 1 |a Ivanov  |b D. M.  |c Chemist  |c Senior researcher of Tomsk Polytechnic University, Candidate of chemical sciences  |f 1992-  |g Daniil Mikhaylovich  |3 (RuTPU)RU\TPU\pers\47038  |9 22632 
701 1 |a Soldatova  |b N. S.  |c organic chemist  |c engineer of Tomsk Polytechnic University  |f 1992-  |g Nataliya Sergeevna  |3 (RuTPU)RU\TPU\pers\36289  |9 19363 
701 1 |a Novikov  |b A. S.  |g Aleksandr Sergeevich 
701 1 |a Postnikov  |b P. S.  |c organic chemist  |c Associate Professor of Tomsk Polytechnic University, Candidate of chemical sciences  |f 1984-  |g Pavel Sergeevich  |3 (RuTPU)RU\TPU\pers\31287  |9 15465 
701 1 |a Yusubov  |b M. S.  |c chemist  |c Professor of Tomsk Polytechnic University, Doctor of chemical sciences  |f 1961-  |g Mekhman Suleiman-Ogly (Suleimanovich)  |3 (RuTPU)RU\TPU\pers\31833  |9 15928 
701 1 |a Kukushkin  |b V. Yu.  |g Vadim Yurjevich 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа химических и биомедицинских технологий  |c (2017- )  |3 (RuTPU)RU\TPU\col\23537 
801 2 |a RU  |b 63413507  |c 20230124  |g RCR 
856 4 |u https://doi.org/10.1021/acs.cgd.0c01463 
942 |c CF