Influence of oblique angle deposition on Cu-substituted hydroxyapatite nano-roughness and morphology

Bibliografske podrobnosti
Parent link:Surface and Coatings Technology
Vol. 394.— 2020.— [125883, 10 p.]
Drugi avtorji: Prosolov K. A. Konstantin Alexandrovich, Khimich M. A. Margarita Andreevna, Rau D. V. Dzhuljetta Vladimirovna, Lychagin D. V. Dmitry Vasiljevich, Sharkeev Yu. P. Yury Petrovich
Izvleček:Title screen
In this work, we study the effect of RF magnetron oblique angle deposition (OAD) on morphology, structure, and elemental composition of as-deposited and heat-treated Cu containing calcium phosphates. The control over the surface morphology and nano roughness provided by OAD is of great interest as both Mesenchymal Stem Cells and various types of bacteria respond strongly to nanoscale topography. A Cu substituted hydroxyapatite target was used to deposit coatings on the surface of titanium (Ti) and silicon (Si) substrates. The samples were placed at an oblique angle of 80° relative to the surface of the sample holder and in a normal configuration with respect to the flux direction and, therefore, parallel to the target. The dense homogeneous coatings with globular surface features deposited at normal flux incidence (NFI) configuration changed to elliptical, highly oriented structures with the direction dictated by the atomic shadowing effect when the substrate was deposited at an oblique angle. As-deposited thin films were subjected to post-deposition-heat-treatment at 700 °C in an Ar atmosphere.
This led to a drastic change in the surface morphology and, namely, lost the directionality of the nanostructures. According to the X-ray diffraction data, the samples deposited obliquely showed preferential growth in the (002) plane and lower internal stress, than samples coated at NFI for both the Si and Ti substrates. The RMS roughness of the films deposited obliquely on Si was twice that of the films deposited at NFI (860±80 pm and 408±60 pm, respectively). However, it was not the case for the Ti substrate, the RMS roughness decreased from 42±4 nm for coatings deposited at normal flux geometry to 33±2 nm for coatings deposited obliquely. The heat-treatment of the samples deposited at 80° resulted in a significant increase in the surface roughness: 8±0.7 nm for Si and 71±4 nm for Ti substrates. The obtained results demonstrate that the oblique angle deposition can be used to fabricate nano-rough surface morphologies.
Режим доступа: по договору с организацией-держателем ресурса
Jezik:angleščina
Izdano: 2020
Teme:
Online dostop:https://doi.org/10.1016/j.surfcoat.2020.125883
Format: Elektronski Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=666190

MARC

LEADER 00000naa0a2200000 4500
001 666190
005 20250213163048.0
035 |a (RuTPU)RU\TPU\network\37394 
035 |a RU\TPU\network\35081 
090 |a 666190 
100 |a 20211209d2020 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Influence of oblique angle deposition on Cu-substituted hydroxyapatite nano-roughness and morphology  |f K. A. Prosolov, M. A. Khimich, D. V. Rau [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 57 tit.] 
330 |a In this work, we study the effect of RF magnetron oblique angle deposition (OAD) on morphology, structure, and elemental composition of as-deposited and heat-treated Cu containing calcium phosphates. The control over the surface morphology and nano roughness provided by OAD is of great interest as both Mesenchymal Stem Cells and various types of bacteria respond strongly to nanoscale topography. A Cu substituted hydroxyapatite target was used to deposit coatings on the surface of titanium (Ti) and silicon (Si) substrates. The samples were placed at an oblique angle of 80° relative to the surface of the sample holder and in a normal configuration with respect to the flux direction and, therefore, parallel to the target. The dense homogeneous coatings with globular surface features deposited at normal flux incidence (NFI) configuration changed to elliptical, highly oriented structures with the direction dictated by the atomic shadowing effect when the substrate was deposited at an oblique angle. As-deposited thin films were subjected to post-deposition-heat-treatment at 700 °C in an Ar atmosphere. 
330 |a This led to a drastic change in the surface morphology and, namely, lost the directionality of the nanostructures. According to the X-ray diffraction data, the samples deposited obliquely showed preferential growth in the (002) plane and lower internal stress, than samples coated at NFI for both the Si and Ti substrates. The RMS roughness of the films deposited obliquely on Si was twice that of the films deposited at NFI (860±80 pm and 408±60 pm, respectively). However, it was not the case for the Ti substrate, the RMS roughness decreased from 42±4 nm for coatings deposited at normal flux geometry to 33±2 nm for coatings deposited obliquely. The heat-treatment of the samples deposited at 80° resulted in a significant increase in the surface roughness: 8±0.7 nm for Si and 71±4 nm for Ti substrates. The obtained results demonstrate that the oblique angle deposition can be used to fabricate nano-rough surface morphologies. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Surface and Coatings Technology 
463 |t Vol. 394  |v [125883, 10 p.]  |d 2020 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a glancing angle deposition 
610 1 |a calcium phosphate coatings 
610 1 |a physical vapor deposition 
610 1 |a nano-roughness 
610 1 |a copper-substituted apatite 
610 1 |a покрытия 
610 1 |a фосфаты кальция 
610 1 |a физическое осаждение 
610 1 |a паровые фазы 
610 1 |a шероховатости 
610 1 |a апатиты 
701 1 |a Prosolov  |b K. A.  |c Physicist  |c Junior research fellow of Tomsk Polytechnic University  |f 1991-  |g Konstantin Alexandrovich  |3 (RuTPU)RU\TPU\pers\47153 
701 1 |a Khimich  |b M. A.  |g Margarita Andreevna 
701 1 |a Rau  |b D. V.  |g Dzhuljetta Vladimirovna 
701 1 |a Lychagin  |b D. V.  |g Dmitry Vasiljevich 
701 1 |a Sharkeev  |b Yu. P.  |c physicist  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1950-  |g Yury Petrovich  |3 (RuTPU)RU\TPU\pers\32228  |9 16228 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа физики высокоэнергетических процессов  |c (2017- )  |3 (RuTPU)RU\TPU\col\23551 
801 2 |a RU  |b 63413507  |c 20220330  |g RCR 
856 4 |u https://doi.org/10.1016/j.surfcoat.2020.125883 
942 |c CF