Zn- or Cu-containing CaP-based coatings formed by micro-arc oxidation on titanium and Ti-40Nb Alloy: Part I-Microstructure, composition and properties

Bibliographic Details
Parent link:Materials
Vol. 13, iss. 18.— 2020.— [4116, 20 p.]
Corporate Author: Национальный исследовательский Томский политехнический университет Исследовательская школа физики высокоэнергетических процессов
Other Authors: Komarova E. G. Ekaterina Gennadjevna, Sharkeev Yu. P. Yury Petrovich, Sedelnikova M. B. Mariya Borisovna, Prosolov K. A. Konstantin Alexandrovich, Khlusov I. A. Igor Albertovich, Primak O. Oleg, Epple M. Matthias
Summary:Title screen
Zn- and Cu-containing CaP-based coatings, obtained by micro-arc oxidation process, were deposited on substrates made of pure titanium (Ti) and novel Ti-40Nb alloy. The microstructure, phase, and elemental composition, as well as physicochemical and mechanical properties, were examined for unmodified CaP and Zn- or Cu-containing CaP coatings, in relation to the applied voltage that was varied in the range from 200 to 350 V. The unmodified CaP coatings on both types of substrates had mainly an amorphous microstructure with a minimal content of the CaHPO4 phase for all applied voltages. The CaP coatings modified with Zn or Cu had a range from amorphous to nano- and microcrystalline structure that contained micro-sized CaHPO4 and Ca(H2PO4)2·H2O phases, as well as nano-sized β-Ca2P2O7, CaHPO4, TiO2, and Nb2O5 phases. The crystallinity of the formed coatings increased in the following order: CaP/TiNb < Zn-CaP/TiNb < Cu-CaP/TiNb < CaP/Ti < Zn-CaP/Ti < Cu-CaP/Ti. The increase in the applied voltage led to a linear increase in thickness, roughness, and porosity of all types of coatings, unlike adhesive strength that was inversely proportional to an increase in the applied voltage. The increase in the applied voltage did not affect the Zn or Cu concentration (~0.4 at%), but led to an increase in the Ca/P atomic ratio from 0.3 to 0.7.
Published: 2020
Subjects:
Online Access:https://doi.org/10.3390/ma13184116
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=666159

MARC

LEADER 00000naa0a2200000 4500
001 666159
005 20250213160636.0
035 |a (RuTPU)RU\TPU\network\37363 
035 |a RU\TPU\network\37362 
090 |a 666159 
100 |a 20211208d2020 k||y0rusy50 ba 
101 0 |a eng 
102 |a CH 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Zn- or Cu-containing CaP-based coatings formed by micro-arc oxidation on titanium and Ti-40Nb Alloy: Part I-Microstructure, composition and properties  |f E. G. Komarova, Yu. P. Sharkeev, M. B. Sedelnikova [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 57 tit.] 
330 |a Zn- and Cu-containing CaP-based coatings, obtained by micro-arc oxidation process, were deposited on substrates made of pure titanium (Ti) and novel Ti-40Nb alloy. The microstructure, phase, and elemental composition, as well as physicochemical and mechanical properties, were examined for unmodified CaP and Zn- or Cu-containing CaP coatings, in relation to the applied voltage that was varied in the range from 200 to 350 V. The unmodified CaP coatings on both types of substrates had mainly an amorphous microstructure with a minimal content of the CaHPO4 phase for all applied voltages. The CaP coatings modified with Zn or Cu had a range from amorphous to nano- and microcrystalline structure that contained micro-sized CaHPO4 and Ca(H2PO4)2·H2O phases, as well as nano-sized β-Ca2P2O7, CaHPO4, TiO2, and Nb2O5 phases. The crystallinity of the formed coatings increased in the following order: CaP/TiNb < Zn-CaP/TiNb < Cu-CaP/TiNb < CaP/Ti < Zn-CaP/Ti < Cu-CaP/Ti. The increase in the applied voltage led to a linear increase in thickness, roughness, and porosity of all types of coatings, unlike adhesive strength that was inversely proportional to an increase in the applied voltage. The increase in the applied voltage did not affect the Zn or Cu concentration (~0.4 at%), but led to an increase in the Ca/P atomic ratio from 0.3 to 0.7. 
461 |t Materials 
463 |t Vol. 13, iss. 18  |v [4116, 20 p.]  |d 2020 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a micro-arc oxidation 
610 1 |a calcium phosphate coating 
610 1 |a pure titanium 
610 1 |a Ti-40 wt% Nb alloy 
610 1 |a microstructure 
610 1 |a morphology 
610 1 |a adhesion strength 
610 1 |a микродуговое оксидирование 
610 1 |a кальций-фосфатные покрытия 
610 1 |a титан 
610 1 |a сплавы 
610 1 |a микроструктуры 
610 1 |a морфология 
610 1 |a прочность 
701 1 |a Komarova  |b E. G.  |g Ekaterina Gennadjevna 
701 1 |a Sharkeev  |b Yu. P.  |c physicist  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1950-  |g Yury Petrovich  |3 (RuTPU)RU\TPU\pers\32228  |9 16228 
701 1 |a Sedelnikova  |b M. B.  |g Mariya Borisovna 
701 1 |a Prosolov  |b K. A.  |c Physicist  |c Junior research fellow of Tomsk Polytechnic University  |f 1991-  |g Konstantin Alexandrovich  |3 (RuTPU)RU\TPU\pers\47153 
701 1 |a Khlusov  |b I. A.  |c biophysicist  |c Professor of Tomsk Polytechnic University, doctor of medical Sciences  |f 1963-  |g Igor Albertovich  |9 18225 
701 1 |a Primak  |b O.  |g Oleg 
701 1 |a Epple  |b M.  |g Matthias 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа физики высокоэнергетических процессов  |c (2017- )  |3 (RuTPU)RU\TPU\col\23551 
801 2 |a RU  |b 63413507  |c 20220330  |g RCR 
856 4 |u https://doi.org/10.3390/ma13184116 
942 |c CF