Costimulatory effect of rough calcium phosphate coating and blood mononuclear cells on adipose-derived mesenchymal stem cells in vitro as a model of in vivo tissue repair

ग्रंथसूची विवरण
Parent link:Materials
Vol. 13, iss. 19.— 2020.— [4398, 31 p.]
अन्य लेखक: Khlusov I. A. Igor Albertovich, Litvinova L. S. Larisa Sergeevna, Shupletsova V. V. Valeria Vladimirovna, Khaziakhmatova O. G. Olga Gennadjevna, Malashchenko V. V. Vladimir Vladimirovich, Yurova K. A. Kristina Alekseevna, Shunkin E. O. Egor Olegovich, Krivosheev V. V., Porokhova E. D. Ekaterina Danilovna, Sizikova A. E. Anastasiya Evegnjevna, Safiullina L. A. Linara Askhatovna, Legostaeva E. V. Elena Viktorovna, Komarova E. G. Ekaterina Gennadjevna, Sharkeev Yu. P. Yury Petrovich
सारांश:Title screen
Calcium phosphate (CaP) materials do not always induce ectopic vascularization and bone formation; the reasons remain unclear, and there are active discussions of potential roles for post-implantation hematoma, circulating immune and stem cells, and pericytes, but studies on adipose-derived stem cells (AMSCs) in this context are lacking. The rough (average surface roughness Ra=2-5 µm) scaffold-like CaP coating deposited on pure titanium plates by the microarc oxidation method was used to investigate its subcutaneous vascularization in CBA/CaLac mice and in vitro effect on cellular and molecular crosstalk between human blood mononuclear cells (hBMNCs) and AMSCs (hAMSCs). Postoperative hematoma development on the CaP surface lasting 1-3 weeks may play a key role in the microvessel elongation and invasion into the CaP relief at the end of the 3rd week of injury and BMNC migration required for enhanced wound healing in mice. Satisfactory osteogenic and chondrogenic differentiation but poor adipogenic differentiation of hAMSCs on the rough CaP surface were detected in vitro by differential cell staining. The fractions of CD73+ (62%), CD90+ (0.24%), and CD105+ (0.41%) BMNCs may be a source of autologous circulating stem/progenitor cells for the subcutis reparation, but allogenic hBMNC participation is mainly related to the effects of CD4+ T cells co-stimulated with CaP coating on the in vitro recruitment of hAMSCs, their secretion of angiogenic and osteomodulatory molecules, and the increase in osteogenic features within the period of in vivo vascularization. Cellular and molecular crosstalk between BMNCs and AMSCs is a model of effective subcutis repair. Rough CaP surface enhanced angio- and osteogenic signaling between cells. We believe that preconditioning and/or co-transplantation of hAMSCs with hBMNCs may broaden their potential in applications related to post-implantation tissue repair and bone bioengineering caused by microarc CaP coating.
भाषा:अंग्रेज़ी
प्रकाशित: 2020
विषय:
ऑनलाइन पहुंच:https://doi.org/10.3390/ma13194398
स्वरूप: इलेक्ट्रोनिक पुस्तक अध्याय
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=666158

MARC

LEADER 00000naa0a2200000 4500
001 666158
005 20250213145818.0
035 |a (RuTPU)RU\TPU\network\37362 
035 |a RU\TPU\network\34115 
090 |a 666158 
100 |a 20211208d2020 k||y0rusy50 ba 
101 0 |a eng 
102 |a CH 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Costimulatory effect of rough calcium phosphate coating and blood mononuclear cells on adipose-derived mesenchymal stem cells in vitro as a model of in vivo tissue repair  |f I. A. Khlusov, L. S. Litvinova, V. V. Shupletsova [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 100 tit.] 
330 |a Calcium phosphate (CaP) materials do not always induce ectopic vascularization and bone formation; the reasons remain unclear, and there are active discussions of potential roles for post-implantation hematoma, circulating immune and stem cells, and pericytes, but studies on adipose-derived stem cells (AMSCs) in this context are lacking. The rough (average surface roughness Ra=2-5 µm) scaffold-like CaP coating deposited on pure titanium plates by the microarc oxidation method was used to investigate its subcutaneous vascularization in CBA/CaLac mice and in vitro effect on cellular and molecular crosstalk between human blood mononuclear cells (hBMNCs) and AMSCs (hAMSCs). Postoperative hematoma development on the CaP surface lasting 1-3 weeks may play a key role in the microvessel elongation and invasion into the CaP relief at the end of the 3rd week of injury and BMNC migration required for enhanced wound healing in mice. Satisfactory osteogenic and chondrogenic differentiation but poor adipogenic differentiation of hAMSCs on the rough CaP surface were detected in vitro by differential cell staining. The fractions of CD73+ (62%), CD90+ (0.24%), and CD105+ (0.41%) BMNCs may be a source of autologous circulating stem/progenitor cells for the subcutis reparation, but allogenic hBMNC participation is mainly related to the effects of CD4+ T cells co-stimulated with CaP coating on the in vitro recruitment of hAMSCs, their secretion of angiogenic and osteomodulatory molecules, and the increase in osteogenic features within the period of in vivo vascularization. Cellular and molecular crosstalk between BMNCs and AMSCs is a model of effective subcutis repair. Rough CaP surface enhanced angio- and osteogenic signaling between cells. We believe that preconditioning and/or co-transplantation of hAMSCs with hBMNCs may broaden their potential in applications related to post-implantation tissue repair and bone bioengineering caused by microarc CaP coating. 
461 |t Materials 
463 |t Vol. 13, iss. 19  |v [4398, 31 p.]  |d 2020 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a microarc calcium phosphate coating 
610 1 |a surface morphology 
610 1 |a mice 
610 1 |a subcutaneous behavior ofimplants 
610 1 |a in vitro modeling 
610 1 |a human cells 
610 1 |a immunophenotype 
610 1 |a motility 
610 1 |a cytokine/chemokine secretion 
610 1 |a osteogenic differentiation 
610 1 |a покрытия 
610 1 |a фосфаты кальция 
610 1 |a морфология поверхности 
610 1 |a имплантаты 
610 1 |a клетки 
610 1 |a моторика 
610 1 |a цитокины 
701 1 |a Khlusov  |b I. A.  |c biophysicist  |c Professor of Tomsk Polytechnic University, doctor of medical Sciences  |f 1963-  |g Igor Albertovich  |9 18225 
701 1 |a Litvinova  |b L. S.  |g Larisa Sergeevna 
701 1 |a Shupletsova  |b V. V.  |g Valeria Vladimirovna 
701 1 |a Khaziakhmatova  |b O. G.  |g Olga Gennadjevna 
701 1 |a Malashchenko  |b V. V.  |g Vladimir Vladimirovich 
701 1 |a Yurova  |b K. A.  |g Kristina Alekseevna 
701 1 |a Shunkin  |b E. O.  |g Egor Olegovich 
701 1 |a Krivosheev  |b V. V. 
701 1 |a Porokhova  |b E. D.  |g Ekaterina Danilovna 
701 1 |a Sizikova  |b A. E.  |g Anastasiya Evegnjevna 
701 1 |a Safiullina  |b L. A.  |g Linara Askhatovna 
701 1 |a Legostaeva  |b E. V.  |g Elena Viktorovna 
701 1 |a Komarova  |b E. G.  |g Ekaterina Gennadjevna 
701 1 |a Sharkeev  |b Yu. P.  |c physicist  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1950-  |g Yury Petrovich  |3 (RuTPU)RU\TPU\pers\32228  |9 16228 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа физики высокоэнергетических процессов  |c (2017- )  |3 (RuTPU)RU\TPU\col\23551 
801 2 |a RU  |b 63413507  |c 20211208  |g RCR 
856 4 |u https://doi.org/10.3390/ma13194398 
942 |c CF