Tailoring the Surface Morphology and the Crystallinity State of Cu- and Zn-Substituted Hydroxyapatites on Ti and Mg-Based Alloys

Bibliographic Details
Parent link:Materials
Vol. 13, iss. 19.— 2020.— [4449, 20 p.]
Corporate Author: Национальный исследовательский Томский политехнический университет Исследовательская школа физики высокоэнергетических процессов
Other Authors: Prosolov K. A. Konstantin Alexandrovich, Lastovka V. V. Vladimir Viktorovich, Belyavskaya O. A. Olga Andreevna, Lychagin D. V. Dmitry Vasilievich, Schmidt J. Jurgen, Sharkeev Yu. P. Yury Petrovich
Summary:Title screen
Titanium-based alloys are known as a “gold standard” in the field of implantable devices. Mg-based alloys, in turn, are very promising biocompatible material for biodegradable, temporary implants. However, the clinical application of Mg-based alloys is currently limited due to the rapid resorption rate in the human body. The deposition of a barrier layer in the form of bioactive calcium phosphate coating is proposed to decelerate Mg-based alloys resorption. The dissolution rate of calcium phosphates is strongly affected by their crystallinity and structure. The structure of antibacterial Cu- and Zn-substituted hydroxyapatite deposited by an radiofrequency (RF) magnetron sputtering on Ti and Mg–Ca substrates is tailored by post-deposition heat treatment and deposition at increased substrate temperatures. It is established that upon an increase in heat treatment temperature mean crystallite size decreases from 47 ± 17 to 13 ± 9 nm. The character of the crystalline structure is not only governed by the temperature itself but relies on the condition such as either post-deposition treatment, where an amorphous calcium phosphate undergoes crystallization or instantaneous crystalline coating growth during deposition on the hot substrate. A higher treatment temperature at 700 °C results in local coating micro-cracking and induced defects, while the temperature of 400–450 °C resulted in the formation of dense, void-free structure.
Language:English
Published: 2020
Subjects:
Online Access:https://doi.org/10.3390/ma13194449
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=666121

MARC

LEADER 00000naa0a2200000 4500
001 666121
005 20250213134037.0
035 |a (RuTPU)RU\TPU\network\37325 
035 |a RU\TPU\network\36904 
090 |a 666121 
100 |a 20211206d2020 k||y0rusy50 ba 
101 0 |a eng 
102 |a CH 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Tailoring the Surface Morphology and the Crystallinity State of Cu- and Zn-Substituted Hydroxyapatites on Ti and Mg-Based Alloys  |f K. A. Prosolov, V. V. Lastovka, O. A. Belyavskaya [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 61 tit.] 
330 |a Titanium-based alloys are known as a “gold standard” in the field of implantable devices. Mg-based alloys, in turn, are very promising biocompatible material for biodegradable, temporary implants. However, the clinical application of Mg-based alloys is currently limited due to the rapid resorption rate in the human body. The deposition of a barrier layer in the form of bioactive calcium phosphate coating is proposed to decelerate Mg-based alloys resorption. The dissolution rate of calcium phosphates is strongly affected by their crystallinity and structure. The structure of antibacterial Cu- and Zn-substituted hydroxyapatite deposited by an radiofrequency (RF) magnetron sputtering on Ti and Mg–Ca substrates is tailored by post-deposition heat treatment and deposition at increased substrate temperatures. It is established that upon an increase in heat treatment temperature mean crystallite size decreases from 47 ± 17 to 13 ± 9 nm. The character of the crystalline structure is not only governed by the temperature itself but relies on the condition such as either post-deposition treatment, where an amorphous calcium phosphate undergoes crystallization or instantaneous crystalline coating growth during deposition on the hot substrate. A higher treatment temperature at 700 °C results in local coating micro-cracking and induced defects, while the temperature of 400–450 °C resulted in the formation of dense, void-free structure. 
461 |t Materials 
463 |t Vol. 13, iss. 19  |v [4449, 20 p.]  |d 2020 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a RF-magnetron sputtering 
610 1 |a calcium phosphate 
610 1 |a TEM 
610 1 |a annealing 
610 1 |a biomaterials 
610 1 |a ВЧ-магнетронное распыление 
610 1 |a фосфат кальция 
610 1 |a отжиг 
610 1 |a биоматериалы 
701 1 |a Prosolov  |b K. A.  |c Physicist  |c Junior research fellow of Tomsk Polytechnic University  |f 1991-  |g Konstantin Alexandrovich  |3 (RuTPU)RU\TPU\pers\47153 
701 1 |a Lastovka  |b V. V.  |g Vladimir Viktorovich 
701 1 |a Belyavskaya  |b O. A.  |g Olga Andreevna 
701 1 |a Lychagin  |b D. V.  |c specialist in the field of mechanical engineering  |c Professor of Yurga technological Institute of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1957-  |g Dmitry Vasilievich  |3 (RuTPU)RU\TPU\pers\31402 
701 1 |a Schmidt  |b J.  |g Jurgen 
701 1 |a Sharkeev  |b Yu. P.  |c physicist  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1950-  |g Yury Petrovich  |3 (RuTPU)RU\TPU\pers\32228  |9 16228 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа физики высокоэнергетических процессов  |c (2017- )  |3 (RuTPU)RU\TPU\col\23551 
801 2 |a RU  |b 63413507  |c 20220330  |g RCR 
856 4 |u https://doi.org/10.3390/ma13194449 
942 |c CF