Semiclassical Spectral Series Localized on a Curve for the Gross–Pitaevskii Equation with a Nonlocal Interaction

書誌詳細
Parent link:Symmetry
Vol. 13, iss. 7.— 2021.— [1289, 22 p.]
第一著者: Kulagin A. E. Anton Evgenievich
その他の著者: Shapovalov A. V. Aleksandr Vasilyevich, Trifonov A. Yu. Andrey Yurievich
要約:Title screen
We propose the approach to constructing semiclassical spectral series for the generalized multidimensional stationary Gross–Pitaevskii equation with a nonlocal interaction term. The eigenvalues and eigenfunctions semiclassically concentrated on a curve are obtained. The curve is described by the dynamic system of moments of solutions to the nonlocal Gross–Pitaevskii equation. We solve the eigenvalue problem for the nonlocal stationary Gross–Pitaevskii equation basing on the semiclassical asymptotics found for the Cauchy problem of the parametric family of linear equations associated with the time-dependent Gross–Pitaevskii equation in the space of extended dimension. The approach proposed uses symmetries of equations in the space of extended dimension.
言語:英語
出版事項: 2021
主題:
オンライン・アクセス:http://earchive.tpu.ru/handle/11683/71102
https://doi.org/10.3390/sym13071289
フォーマット: 電子媒体 図書の章
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=666097

類似資料