Semiclassical Spectral Series Localized on a Curve for the Gross–Pitaevskii Equation with a Nonlocal Interaction

التفاصيل البيبلوغرافية
Parent link:Symmetry
Vol. 13, iss. 7.— 2021.— [1289, 22 p.]
المؤلف الرئيسي: Kulagin A. E. Anton Evgenievich
مؤلفون آخرون: Shapovalov A. V. Aleksandr Vasilyevich, Trifonov A. Yu. Andrey Yurievich
الملخص:Title screen
We propose the approach to constructing semiclassical spectral series for the generalized multidimensional stationary Gross–Pitaevskii equation with a nonlocal interaction term. The eigenvalues and eigenfunctions semiclassically concentrated on a curve are obtained. The curve is described by the dynamic system of moments of solutions to the nonlocal Gross–Pitaevskii equation. We solve the eigenvalue problem for the nonlocal stationary Gross–Pitaevskii equation basing on the semiclassical asymptotics found for the Cauchy problem of the parametric family of linear equations associated with the time-dependent Gross–Pitaevskii equation in the space of extended dimension. The approach proposed uses symmetries of equations in the space of extended dimension.
اللغة:الإنجليزية
منشور في: 2021
الموضوعات:
الوصول للمادة أونلاين:http://earchive.tpu.ru/handle/11683/71102
https://doi.org/10.3390/sym13071289
التنسيق: الكتروني فصل الكتاب
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=666097

مواد مشابهة