Analysis of heteroscedastic measurement data by the self-refining method of interval fusion with preference aggregation – IF&PA

Detalles Bibliográficos
Parent link:Measurement
Vol. 183.— 2021.— [109851, 15 p.]
Autor principal: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Autor Corporativo: Национальный исследовательский Томский политехнический университет Инженерная школа информационных технологий и робототехники Отделение автоматизации и робототехники
Otros Autores: Khudonogova L. I. Ludmila Igorevna, Ho Minh Dai
Sumario:Title screen
The newly proposed interval fusion with preference aggregation (IF&PA) procedure, further modified and formalized to improve the accuracy of the fusion result, is presented and applied to process the heteroscedastic data of a real experiment. The experiment consisted in determination of the reference values of the two measurands, DC voltage and resistance, based on the readings of five different models of multimeters. The data heteroscedasticity was ensured by a special transformation of the raw measurements. For comparison, the same data were processed by the method of weighted mean. For the two methods, absolute deviations of the obtained reference values from the nominal values (which are the high-precision calibrator outputs) and reference value uncertainties were estimated. The paper key outcome is that the IF&PA procedure provides a reference value to be very close to nominal value with considerably reduced uncertainty in comparison with traditional weighted mean calculation.
Режим доступа: по договору с организацией-держателем ресурса
Lenguaje:inglés
Publicado: 2021
Materias:
Acceso en línea:https://doi.org/10.1016/j.measurement.2021.109851
Formato: Electrónico Capítulo de libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=666041

Ejemplares similares