A two-dimensional soliton system of vortex and Q-ball

Podrobná bibliografie
Parent link:Physics Letters B
Vol. 777.— 2018.— [P. 340-345]
Hlavní autor: Loginov A. Yu. Aleksey Yurievich
Korporace: Национальный исследовательский Томский политехнический университет Инженерная школа неразрушающего контроля и безопасности Испытательный центр Лаборатория испытаний на радиационную электризацию, Национальный исследовательский Томский политехнический университет Физико-технический институт Кафедра физико-энергетических установок (№ 21)
Shrnutí:Title screen
The (2+1)-dimensional gauge model describing two complex scalar fields that interact through a common Abelian gauge field is considered. It is shown that the model has a soliton solution that describes a system consisting of a vortex and a Q-ball. This two-dimensional system is electrically neutral, nevertheless it possesses a nonzero electric field. Moreover, the soliton system has a quantized magnetic flux and a nonzero angular momentum. Properties of this vortex-Q-ball system are investigated by analytical and numerical methods. It is found that the system combines properties of topological and nontopological solitons.
Vydáno: 2018
Témata:
On-line přístup:https://doi.org/10.1016/j.physletb.2017.12.054
Médium: Elektronický zdroj Kapitola
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=665956
Popis
Shrnutí:Title screen
The (2+1)-dimensional gauge model describing two complex scalar fields that interact through a common Abelian gauge field is considered. It is shown that the model has a soliton solution that describes a system consisting of a vortex and a Q-ball. This two-dimensional system is electrically neutral, nevertheless it possesses a nonzero electric field. Moreover, the soliton system has a quantized magnetic flux and a nonzero angular momentum. Properties of this vortex-Q-ball system are investigated by analytical and numerical methods. It is found that the system combines properties of topological and nontopological solitons.
DOI:10.1016/j.physletb.2017.12.054