Systematic study and comparison of photonic nanojets produced by dielectric microparticles in 2D- and 3D-spatial configurations
| Parent link: | Journal of Optics Vol. 20, iss. 6.— 2018.— [065606, 9 p.] |
|---|---|
| Korporativní autor: | |
| Další autoři: | , , , |
| Shrnutí: | Title screen We present the systematic study of key characteristics (field intensity enhancement, spatial extents) of the 2D- and 3D-photonic nanojets (PNJs) produced by geometrically-regular micron-sized dielectric particles illuminated by a plane laser wave. By means of the finite-difference time-domain calculations, we highlight the differences and similarities between PNJs in these two spatial configurations for curved- (sphere, circular cylinder) and rectangle-shaped scatterers (cube, square bar). Our findings can be useful, for example, for the design of particle-based high-resolution imaging because the spatial resolution by such systems might be further controlled by the optimization of refractive index contrast and geometrical shape of the particle-lens. |
| Jazyk: | angličtina |
| Vydáno: |
2018
|
| Témata: | |
| On-line přístup: | https://doi.org/10.1088/2040-8986/aac1d9 |
| Médium: | Elektronický zdroj Kapitola |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=665822 |
| Shrnutí: | Title screen We present the systematic study of key characteristics (field intensity enhancement, spatial extents) of the 2D- and 3D-photonic nanojets (PNJs) produced by geometrically-regular micron-sized dielectric particles illuminated by a plane laser wave. By means of the finite-difference time-domain calculations, we highlight the differences and similarities between PNJs in these two spatial configurations for curved- (sphere, circular cylinder) and rectangle-shaped scatterers (cube, square bar). Our findings can be useful, for example, for the design of particle-based high-resolution imaging because the spatial resolution by such systems might be further controlled by the optimization of refractive index contrast and geometrical shape of the particle-lens. |
|---|---|
| DOI: | 10.1088/2040-8986/aac1d9 |