IR thermography study of flow structure and parameters in diffusion flames

Bibliographic Details
Parent link:Infrared Physics and Technology
Vol. 117.— 2021.— [103851, 11 p.]
Corporate Author: Национальный исследовательский Томский политехнический университет Инженерная школа неразрушающего контроля и безопасности Центр промышленной томографии Научно-производственная лаборатория "Тепловой контроль"
Other Authors: Loboda E. L. Egor Leonidovich, Matvienko O. V. Oleg Viktorovich, Agafontsev M. V. Mikhail Vladimirovich, Reyno V. V. Vladimir Vladimirovich, Vavilov V. P. Vladimir Platonovich
Summary:Title screen
The flame structure and flow modes have been investigated in the process of diffusion combustion of a number of liquid fuels, such as ethanol, benzine, kerosene and diesel fuel, by using the technique of infrared (IR) thermography in the narrow spectral range (2.5–2.7 ?m). IR thermography provides useful information on the thermal behavior of turbulent diffusion flames, which is the thermal representation of turbulent processes in the hydrodynamic structure of flames. By analyzing IR images and spectra of flame temperature fluctuations, seven characteristic zones with different flow modes have been identified in the flames. To estimate flame flow parameters, the turbulent Reynolds number has been used thus taking account the amplitude and frequency of the temperature fluctuations determined by processing IR images of flames. The Reynolds number strongly increases during the diffusion combustion of kerosene, in contrast to benzine, diesel fuel and ethanol. This can be explained by a more complex chemical composition of kerosene and a multi-stage character of chemical reactions.
Режим доступа: по договору с организацией-держателем ресурса
Language:English
Published: 2021
Subjects:
Online Access:https://doi.org/10.1016/j.infrared.2021.103851
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=665702

MARC

LEADER 00000naa0a2200000 4500
001 665702
005 20250204164336.0
035 |a (RuTPU)RU\TPU\network\36906 
035 |a RU\TPU\network\36902 
090 |a 665702 
100 |a 20211109d2021 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a IR thermography study of flow structure and parameters in diffusion flames  |f E. L. Loboda, O. V. Matvienko, M. V. Agafontsev [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 68 tit.] 
330 |a The flame structure and flow modes have been investigated in the process of diffusion combustion of a number of liquid fuels, such as ethanol, benzine, kerosene and diesel fuel, by using the technique of infrared (IR) thermography in the narrow spectral range (2.5–2.7 ?m). IR thermography provides useful information on the thermal behavior of turbulent diffusion flames, which is the thermal representation of turbulent processes in the hydrodynamic structure of flames. By analyzing IR images and spectra of flame temperature fluctuations, seven characteristic zones with different flow modes have been identified in the flames. To estimate flame flow parameters, the turbulent Reynolds number has been used thus taking account the amplitude and frequency of the temperature fluctuations determined by processing IR images of flames. The Reynolds number strongly increases during the diffusion combustion of kerosene, in contrast to benzine, diesel fuel and ethanol. This can be explained by a more complex chemical composition of kerosene and a multi-stage character of chemical reactions. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Infrared Physics and Technology 
463 |t Vol. 117  |v [103851, 11 p.]  |d 2021 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a IR thermography 
610 1 |a combustion 
610 1 |a turbulent flame 
610 1 |a hydrocarbons 
610 1 |a turbulent Reynolds number 
610 1 |a flame structure 
610 1 |a инфракрасная термография 
610 1 |a горение 
610 1 |a углеводороды 
610 1 |a число Рейнольдса 
701 1 |a Loboda  |b E. L.  |g Egor Leonidovich 
701 1 |a Matvienko  |b O. V.  |g Oleg Viktorovich 
701 1 |a Agafontsev  |b M. V.  |g Mikhail Vladimirovich 
701 1 |a Reyno  |b V. V.  |g Vladimir Vladimirovich 
701 1 |a Vavilov  |b V. P.  |c Specialist in the field of dosimetry and methodology of nondestructive testing (NDT)  |c Doctor of technical sciences (DSc), Professor of Tomsk Polytechnic University (TPU)  |f 1949-  |g Vladimir Platonovich  |3 (RuTPU)RU\TPU\pers\32161  |9 16163 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа неразрушающего контроля и безопасности  |b Центр промышленной томографии  |b Научно-производственная лаборатория "Тепловой контроль"  |3 (RuTPU)RU\TPU\col\23838 
801 2 |a RU  |b 63413507  |c 20211109  |g RCR 
856 4 |u https://doi.org/10.1016/j.infrared.2021.103851 
942 |c CF