Remarks on a D(2,1;a) super-Schwarzian derivative

Detalles Bibliográficos
Parent link:Physical Review D: covering particles, fields, gravitation, and cosmology
Vol. 103, iss. 12.— 2021.— [126007, 14 p.]
Autor Principal: Galajinsky A. V. Anton Vladimirovich
Autor Corporativo: Национальный исследовательский Томский политехнический университет Исследовательская школа физики высокоэнергетических процессов
Outros autores: Masterov I. V. Ivan Viktorovich
Summary:Title screen
It was recently demonstrated that N=1, 2, 3, 4 super-Schwarzian derivatives can be constructed by applying the method of nonlinear realizations to finite-dimensional superconformal groups OSp(1|2), SU(1,1|1), OSp(3|2), SU(1,1|2), respectively, thus avoiding the use of superconformal field theory techniques. In this work, a similar construction is applied to the exceptional supergroup D(2,1;a), which describes the most general N=4 supersymmetric extension of SL(2,R), with the aim to study possible candidates for a D(2,1;a) super-Schwarzian derivative.
Publicado: 2021
Subjects:
Acceso en liña:https://doi.org/10.1103/PhysRevD.103.126007
Formato: Electrónico Capítulo de libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=665591
Descripción
Summary:Title screen
It was recently demonstrated that N=1, 2, 3, 4 super-Schwarzian derivatives can be constructed by applying the method of nonlinear realizations to finite-dimensional superconformal groups OSp(1|2), SU(1,1|1), OSp(3|2), SU(1,1|2), respectively, thus avoiding the use of superconformal field theory techniques. In this work, a similar construction is applied to the exceptional supergroup D(2,1;a), which describes the most general N=4 supersymmetric extension of SL(2,R), with the aim to study possible candidates for a D(2,1;a) super-Schwarzian derivative.
DOI:10.1103/PhysRevD.103.126007