Active Thermal Testing of Impact Damage in 3D-Printed Composite Materials
| Parent link: | Russian Journal of Nondestructive Testing Vol. 56, iss. 12.— 2020.— [P. 1083–1090] |
|---|---|
| Corporate Authors: | , |
| מחברים אחרים: | , , , , |
| סיכום: | Title screen Using the method of ultrasonic infrared thermography, it has been shown that 3D printing technology prevents cracking of the edges of access holes in composites during their machining. It is expedient to evaluate the impact strength of composites by the relative change in the thermophysical characteristics in the zones of impact damage, based on the assumption that a higher impact energy leads to the more developed defects and, accordingly, to the greater relative changes in thermal inertia and thermal diffusivity. The impact resistances of Kevlar and carbon fiber composite specimens, as well as their hybrid, have been compared. The highest impact resistance was demonstrated by a hybrid sample of Kevlar and carbon fiber composite, in which the change in thermal inertia and thermal diffusivity after an impact with an energy of 15 J was 4 and 8%, respectively, compared with 10 and 9% for the CFRP and 15 and 11% for the Kevlar. Режим доступа: по договору с организацией-держателем ресурса |
| שפה: | אנגלית |
| יצא לאור: |
2020
|
| נושאים: | |
| גישה מקוונת: | https://doi.org/10.1134/S1061830920120098 |
| פורמט: | אלקטרוני Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=665446 |
MARC
| LEADER | 00000naa0a2200000 4500 | ||
|---|---|---|---|
| 001 | 665446 | ||
| 005 | 20250203162742.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\36645 | ||
| 035 | |a RU\TPU\network\35120 | ||
| 090 | |a 665446 | ||
| 100 | |a 20211001d2020 k||y0rusy50 ba | ||
| 101 | 0 | |a eng | |
| 102 | |a US | ||
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Active Thermal Testing of Impact Damage in 3D-Printed Composite Materials |f B. I. Shagdyrov, A. O. Chulkov, V. P. Vavilov [et al.] | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 320 | |a [References: 10 tit.] | ||
| 330 | |a Using the method of ultrasonic infrared thermography, it has been shown that 3D printing technology prevents cracking of the edges of access holes in composites during their machining. It is expedient to evaluate the impact strength of composites by the relative change in the thermophysical characteristics in the zones of impact damage, based on the assumption that a higher impact energy leads to the more developed defects and, accordingly, to the greater relative changes in thermal inertia and thermal diffusivity. The impact resistances of Kevlar and carbon fiber composite specimens, as well as their hybrid, have been compared. The highest impact resistance was demonstrated by a hybrid sample of Kevlar and carbon fiber composite, in which the change in thermal inertia and thermal diffusivity after an impact with an energy of 15 J was 4 and 8%, respectively, compared with 10 and 9% for the CFRP and 15 and 11% for the Kevlar. | ||
| 333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
| 461 | |t Russian Journal of Nondestructive Testing | ||
| 463 | |t Vol. 56, iss. 12 |v [P. 1083–1090] |d 2020 | ||
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a active thermal testing | |
| 610 | 1 | |a 3D-printed composites | |
| 610 | 1 | |a carbon fiber composite | |
| 610 | 1 | |a Kevlar | |
| 610 | 1 | |a hybrid composite | |
| 610 | 1 | |a impact damage | |
| 610 | 1 | |a thermal diffusivity | |
| 610 | 1 | |a thermal inertia | |
| 610 | 1 | |a тепловые испытания | |
| 610 | 1 | |a композитные материалы | |
| 610 | 1 | |a 3D-принтеры | |
| 610 | 1 | |a гибридные композиционные материалы | |
| 610 | 1 | |a температуропроводность | |
| 610 | 1 | |a тепловая инерция | |
| 701 | 1 | |a Shagdyrov |b B. I. |c specialist in the field of non-destructive testing |c engineer of Tomsk Polytechnic University |f 1995- |g Bator Ilyich |3 (RuTPU)RU\TPU\pers\47532 | |
| 701 | 1 | |a Chulkov |b A. O. |c specialist in the field of non-destructive testing |c Deputy Director for Scientific and Educational Activities; acting manager; Senior Researcher, Tomsk Polytechnic University, Candidate of Technical Sciences |f 1989- |g Arseniy Olegovich |3 (RuTPU)RU\TPU\pers\32220 |9 16220 | |
| 701 | 1 | |a Vavilov |b V. P. |c Specialist in the field of dosimetry and methodology of nondestructive testing (NDT) |c Doctor of technical sciences (DSc), Professor of Tomsk Polytechnic University (TPU) |f 1949- |g Vladimir Platonovich |3 (RuTPU)RU\TPU\pers\32161 |9 16163 | |
| 701 | 1 | |a Kaledin |b V. O. |g Valery Olegovich | |
| 701 | 1 | |a Omar |b M. A. | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |b Инженерная школа неразрушающего контроля и безопасности |b Центр промышленной томографии |b Международная научно-образовательная лаборатория неразрушающего контроля |3 (RuTPU)RU\TPU\col\19961 |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |b Инженерная школа неразрушающего контроля и безопасности |b Центр промышленной томографии |b Научно-производственная лаборатория "Тепловой контроль" |3 (RuTPU)RU\TPU\col\23838 |
| 801 | 2 | |a RU |b 63413507 |c 20230310 |g RCR | |
| 856 | 4 | |u https://doi.org/10.1134/S1061830920120098 | |
| 942 | |c CF | ||