Active Thermal Testing of Impact Damage in 3D-Printed Composite Materials

Bibliographic Details
Parent link:Russian Journal of Nondestructive Testing
Vol. 56, iss. 12.— 2020.— [P. 1083–1090]
Corporate Authors: Национальный исследовательский Томский политехнический университет Инженерная школа неразрушающего контроля и безопасности Центр промышленной томографии Международная научно-образовательная лаборатория неразрушающего контроля, Национальный исследовательский Томский политехнический университет Инженерная школа неразрушающего контроля и безопасности Центр промышленной томографии Научно-производственная лаборатория "Тепловой контроль"
Other Authors: Shagdyrov B. I. Bator Ilyich, Chulkov A. O. Arseniy Olegovich, Vavilov V. P. Vladimir Platonovich, Kaledin V. O. Valery Olegovich, Omar M. A.
Summary:Title screen
Using the method of ultrasonic infrared thermography, it has been shown that 3D printing technology prevents cracking of the edges of access holes in composites during their machining. It is expedient to evaluate the impact strength of composites by the relative change in the thermophysical characteristics in the zones of impact damage, based on the assumption that a higher impact energy leads to the more developed defects and, accordingly, to the greater relative changes in thermal inertia and thermal diffusivity. The impact resistances of Kevlar and carbon fiber composite specimens, as well as their hybrid, have been compared. The highest impact resistance was demonstrated by a hybrid sample of Kevlar and carbon fiber composite, in which the change in thermal inertia and thermal diffusivity after an impact with an energy of 15 J was 4 and 8%, respectively, compared with 10 and 9% for the CFRP and 15 and 11% for the Kevlar.
Режим доступа: по договору с организацией-держателем ресурса
Language:English
Published: 2020
Subjects:
Online Access:https://doi.org/10.1134/S1061830920120098
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=665446

MARC

LEADER 00000naa0a2200000 4500
001 665446
005 20250203162742.0
035 |a (RuTPU)RU\TPU\network\36645 
035 |a RU\TPU\network\35120 
090 |a 665446 
100 |a 20211001d2020 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Active Thermal Testing of Impact Damage in 3D-Printed Composite Materials  |f B. I. Shagdyrov, A. O. Chulkov, V. P. Vavilov [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 10 tit.] 
330 |a Using the method of ultrasonic infrared thermography, it has been shown that 3D printing technology prevents cracking of the edges of access holes in composites during their machining. It is expedient to evaluate the impact strength of composites by the relative change in the thermophysical characteristics in the zones of impact damage, based on the assumption that a higher impact energy leads to the more developed defects and, accordingly, to the greater relative changes in thermal inertia and thermal diffusivity. The impact resistances of Kevlar and carbon fiber composite specimens, as well as their hybrid, have been compared. The highest impact resistance was demonstrated by a hybrid sample of Kevlar and carbon fiber composite, in which the change in thermal inertia and thermal diffusivity after an impact with an energy of 15 J was 4 and 8%, respectively, compared with 10 and 9% for the CFRP and 15 and 11% for the Kevlar. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Russian Journal of Nondestructive Testing 
463 |t Vol. 56, iss. 12  |v [P. 1083–1090]  |d 2020 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a active thermal testing 
610 1 |a 3D-printed composites 
610 1 |a carbon fiber composite 
610 1 |a Kevlar 
610 1 |a hybrid composite 
610 1 |a impact damage 
610 1 |a thermal diffusivity 
610 1 |a thermal inertia 
610 1 |a тепловые испытания 
610 1 |a композитные материалы 
610 1 |a 3D-принтеры 
610 1 |a гибридные композиционные материалы 
610 1 |a температуропроводность 
610 1 |a тепловая инерция 
701 1 |a Shagdyrov  |b B. I.  |c specialist in the field of non-destructive testing  |c engineer of Tomsk Polytechnic University  |f 1995-  |g Bator Ilyich  |3 (RuTPU)RU\TPU\pers\47532 
701 1 |a Chulkov  |b A. O.  |c specialist in the field of non-destructive testing  |c Deputy Director for Scientific and Educational Activities; acting manager; Senior Researcher, Tomsk Polytechnic University, Candidate of Technical Sciences  |f 1989-  |g Arseniy Olegovich  |3 (RuTPU)RU\TPU\pers\32220  |9 16220 
701 1 |a Vavilov  |b V. P.  |c Specialist in the field of dosimetry and methodology of nondestructive testing (NDT)  |c Doctor of technical sciences (DSc), Professor of Tomsk Polytechnic University (TPU)  |f 1949-  |g Vladimir Platonovich  |3 (RuTPU)RU\TPU\pers\32161  |9 16163 
701 1 |a Kaledin  |b V. O.  |g Valery Olegovich 
701 1 |a Omar  |b M. A. 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа неразрушающего контроля и безопасности  |b Центр промышленной томографии  |b Международная научно-образовательная лаборатория неразрушающего контроля  |3 (RuTPU)RU\TPU\col\19961 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа неразрушающего контроля и безопасности  |b Центр промышленной томографии  |b Научно-производственная лаборатория "Тепловой контроль"  |3 (RuTPU)RU\TPU\col\23838 
801 2 |a RU  |b 63413507  |c 20230310  |g RCR 
856 4 |u https://doi.org/10.1134/S1061830920120098 
942 |c CF