Progress in low energy high intensity ion implantation method development

Dades bibliogràfiques
Parent link:Surface and Coatings Technology
Vol. 388.— 2020.— [125561, 9 p.]
Autor principal: Ryabchikov A. I. Aleksandr Ilyich
Autor corporatiu: Национальный исследовательский Томский политехнический университет Инженерная школа ядерных технологий Научная лаборатория высокоинтенсивной имплантации ионов
Sumari:Title screen
New results on the equipment development and advancement of the method of high-intensity ion implantation of metal, gases and low-energy semiconductors providing a long range effect of dopants penetration are presented in the article. The results of the research and development of plasma-immersion systems for the formation of ion beams with a current density of tens and hundreds of mA/cm2, a beam current exceeding 1 A at kilovolt accelerating voltages using ion extraction and beam focusing systems as part of a sphere or cylinder are shown. A comparative analysis of various systems, their advantages and disadvantages depending on the purpose are presented.The concept of low energy high intensity ion implantation (LEHI3) method is described. The features of the method as applied to the problems of deep modification of the microstructure and operational characteristics of metals and alloys are analyzed. The report presents the results of experimental studies of LEHI3 of aluminum, titanium, nitrogen into various structural materials. The possibility of ion doping of materials at depths of several tens and hundreds of micrometers is shown. Data are presented on the changes in the elemental composition, microstructure and properties of various materials depending on the ion current density of 10-500 mA/cm2, ion energy, implantation temperature and irradiation fluence of 1018-1022 ion/cm2.Based on the analysis of the obtained experimental data, the directions of further research are discussed in the framework of the development of the physical and technological foundations of the LEHI3 method of material properties modification at depths that are orders of magnitude greater than the projective ranges of ions.
Режим доступа: по договору с организацией-держателем ресурса
Idioma:anglès
Publicat: 2020
Matèries:
Accés en línia:https://doi.org/10.1016/j.surfcoat.2020.125561
Format: Electrònic Capítol de llibre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=665444

MARC

LEADER 00000naa0a2200000 4500
001 665444
005 20250203160518.0
035 |a (RuTPU)RU\TPU\network\36643 
035 |a RU\TPU\network\34204 
090 |a 665444 
100 |a 20211001d2020 k||y0engy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Progress in low energy high intensity ion implantation method development  |f A. I. Ryabchikov 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 36 tit.] 
330 |a New results on the equipment development and advancement of the method of high-intensity ion implantation of metal, gases and low-energy semiconductors providing a long range effect of dopants penetration are presented in the article. The results of the research and development of plasma-immersion systems for the formation of ion beams with a current density of tens and hundreds of mA/cm2, a beam current exceeding 1 A at kilovolt accelerating voltages using ion extraction and beam focusing systems as part of a sphere or cylinder are shown. A comparative analysis of various systems, their advantages and disadvantages depending on the purpose are presented.The concept of low energy high intensity ion implantation (LEHI3) method is described. The features of the method as applied to the problems of deep modification of the microstructure and operational characteristics of metals and alloys are analyzed. The report presents the results of experimental studies of LEHI3 of aluminum, titanium, nitrogen into various structural materials. The possibility of ion doping of materials at depths of several tens and hundreds of micrometers is shown. Data are presented on the changes in the elemental composition, microstructure and properties of various materials depending on the ion current density of 10-500 mA/cm2, ion energy, implantation temperature and irradiation fluence of 1018-1022 ion/cm2.Based on the analysis of the obtained experimental data, the directions of further research are discussed in the framework of the development of the physical and technological foundations of the LEHI3 method of material properties modification at depths that are orders of magnitude greater than the projective ranges of ions. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Surface and Coatings Technology 
463 |t Vol. 388  |v [125561, 9 p.]  |d 2020 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a low energy ion 
610 1 |a high intensity implantation 
610 1 |a super high fluencies 
610 1 |a deep dopants penetration 
700 1 |a Ryabchikov  |b A. I.  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |c physicist  |f 1950-  |g Aleksandr Ilyich  |3 (RuTPU)RU\TPU\pers\30912 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа ядерных технологий  |b Научная лаборатория высокоинтенсивной имплантации ионов  |3 (RuTPU)RU\TPU\col\23698 
801 2 |a RU  |b 63413507  |c 20211001  |g RCR 
856 4 |u https://doi.org/10.1016/j.surfcoat.2020.125561 
942 |c CF