Synthesis of Ta–6Cu Bimetallic Nanoparticles and the Bulk Composite with Antimicrobial Activity

Dades bibliogràfiques
Parent link:Inorganic Materials: Applied Research
Vol. 12, iss. 3.— 2021.— [P. 755-761]
Altres autors: Pervikov A. V. Aleksandr Vasiljevich, Dvilis E. S. Edgar Sergeevich, Khrustalyov A. P. Anton Pavlovich, Bakina O. V. Olga Vasiljevna, Paygin V. D. Vladimir Denisovich, Lozhkomoev A. S. Aleksandr Sergeevich, Chumaevsky A. V. Andrey Valerjevich, Khasanov O. L. Oleg Leonidovich, Lerner M. I. Marat Izrailyevich
Sumari:Title screen
The possibility of the synthesis of bimetallic Janus nanoparticles from immiscible metals Ta and Cu by the method of electric explosion of two conductors in an argon atmosphere has been shown. Consolidation of Ta-Cu nanoparticles and spark plasma sintering yielded a composite material with a high microhardness and compressive strength, but a relatively low bending strength. The Ta-Cu composite inhibits the viability of bacteria Escherichia coli and Staphylococcus aureus with an efficiency of 99.99% owing to the slow release of small concentrations of Cu2+ ions. The synthesized composite material with high antibacterial activity for a long time is promising for the technologies of modern regenerative medicine.
Режим доступа: по договору с организацией-держателем ресурса
Publicat: 2021
Matèries:
Accés en línia:https://doi.org/10.1134/S207511332103028X
Format: Electrònic Capítol de llibre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=665325
Descripció
Sumari:Title screen
The possibility of the synthesis of bimetallic Janus nanoparticles from immiscible metals Ta and Cu by the method of electric explosion of two conductors in an argon atmosphere has been shown. Consolidation of Ta-Cu nanoparticles and spark plasma sintering yielded a composite material with a high microhardness and compressive strength, but a relatively low bending strength. The Ta-Cu composite inhibits the viability of bacteria Escherichia coli and Staphylococcus aureus with an efficiency of 99.99% owing to the slow release of small concentrations of Cu2+ ions. The synthesized composite material with high antibacterial activity for a long time is promising for the technologies of modern regenerative medicine.
Режим доступа: по договору с организацией-держателем ресурса
DOI:10.1134/S207511332103028X