Adomian Decomposition Method for the One-dimensional Nonlocal Fisher–Kolmogorov–Petrovsky–Piskunov Equation
| Parent link: | Russian Physics Journal Vol. 62, iss. 4.— 2019.— [P. 710-719] |
|---|---|
| Main Author: | |
| Corporate Author: | |
| Other Authors: | |
| Summary: | Title screen The Adomian decomposition method is applied to construct an approximate solution of the generalized one-dimensional Fisher-Kolmogorov-Petrovsky-Piskunov equation describing the population dynamics with nonlocal competitive losses. An approximate solution is constructed in the class of decreasing functions. The diffusion operator is taken as a reversible linear operator. The inverse operator is presented in terms of the diffusion propagator. An example of the approximate solution of the Cauchy problem for the function of competitive losses and for the initial function of the Gaussian type is considered. Режим доступа: по договору с организацией-держателем ресурса |
| Published: |
2019
|
| Subjects: | |
| Online Access: | https://doi.org/10.1007/s11182-019-01768-y |
| Format: | Electronic Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=665281 |
MARC
| LEADER | 00000naa0a2200000 4500 | ||
|---|---|---|---|
| 001 | 665281 | ||
| 005 | 20250129160635.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\36480 | ||
| 035 | |a RU\TPU\network\34452 | ||
| 090 | |a 665281 | ||
| 100 | |a 20210908d2019 k||y0rusy50 ba | ||
| 101 | 0 | |a eng | |
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Adomian Decomposition Method for the One-dimensional Nonlocal Fisher–Kolmogorov–Petrovsky–Piskunov Equation |f A. V. Shapovalov, A. Yu. Trifonov | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 320 | |a [References: 27 tit.] | ||
| 330 | |a The Adomian decomposition method is applied to construct an approximate solution of the generalized one-dimensional Fisher-Kolmogorov-Petrovsky-Piskunov equation describing the population dynamics with nonlocal competitive losses. An approximate solution is constructed in the class of decreasing functions. The diffusion operator is taken as a reversible linear operator. The inverse operator is presented in terms of the diffusion propagator. An example of the approximate solution of the Cauchy problem for the function of competitive losses and for the initial function of the Gaussian type is considered. | ||
| 333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
| 461 | |t Russian Physics Journal | ||
| 463 | |t Vol. 62, iss. 4 |v [P. 710-719] |d 2019 | ||
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a onlocal generalized Fisher–Kolmogorov–Petrovsky–Piskunov equation | |
| 610 | 1 | |a approximate solutions | |
| 610 | 1 | |a Adomian’s decomposition method | |
| 610 | 1 | |a diffusion propagator | |
| 610 | 1 | |a уравнение Фишера-Колмогорова-Петровского-Пискунова | |
| 610 | 1 | |a метод разложения | |
| 610 | 1 | |a убывающие функции | |
| 610 | 1 | |a пропагаторы | |
| 610 | 1 | |a линейные операторы | |
| 610 | 1 | |a обратные операторы | |
| 700 | 1 | |a Shapovalov |b A. V. |g Aleksandr Vasiljevich | |
| 701 | 1 | |a Trifonov |b A. Yu. |c physicist, mathematician |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences |f 1963- |g Andrey Yurievich |3 (RuTPU)RU\TPU\pers\30754 | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |b Школа базовой инженерной подготовки |b Отделение математики и информатики |3 (RuTPU)RU\TPU\col\23555 |
| 801 | 2 | |a RU |b 63413507 |c 20210908 |g RCR | |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s11182-019-01768-y |
| 942 | |c CF | ||