Adomian Decomposition Method for the One-dimensional Nonlocal Fisher–Kolmogorov–Petrovsky–Piskunov Equation

Bibliographic Details
Parent link:Russian Physics Journal
Vol. 62, iss. 4.— 2019.— [P. 710-719]
Main Author: Shapovalov A. V. Aleksandr Vasiljevich
Corporate Author: Национальный исследовательский Томский политехнический университет Школа базовой инженерной подготовки Отделение математики и информатики
Other Authors: Trifonov A. Yu. Andrey Yurievich
Summary:Title screen
The Adomian decomposition method is applied to construct an approximate solution of the generalized one-dimensional Fisher-Kolmogorov-Petrovsky-Piskunov equation describing the population dynamics with nonlocal competitive losses. An approximate solution is constructed in the class of decreasing functions. The diffusion operator is taken as a reversible linear operator. The inverse operator is presented in terms of the diffusion propagator. An example of the approximate solution of the Cauchy problem for the function of competitive losses and for the initial function of the Gaussian type is considered.
Режим доступа: по договору с организацией-держателем ресурса
Published: 2019
Subjects:
Online Access:https://doi.org/10.1007/s11182-019-01768-y
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=665281

MARC

LEADER 00000naa0a2200000 4500
001 665281
005 20250129160635.0
035 |a (RuTPU)RU\TPU\network\36480 
035 |a RU\TPU\network\34452 
090 |a 665281 
100 |a 20210908d2019 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Adomian Decomposition Method for the One-dimensional Nonlocal Fisher–Kolmogorov–Petrovsky–Piskunov Equation  |f A. V. Shapovalov, A. Yu. Trifonov 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 27 tit.] 
330 |a The Adomian decomposition method is applied to construct an approximate solution of the generalized one-dimensional Fisher-Kolmogorov-Petrovsky-Piskunov equation describing the population dynamics with nonlocal competitive losses. An approximate solution is constructed in the class of decreasing functions. The diffusion operator is taken as a reversible linear operator. The inverse operator is presented in terms of the diffusion propagator. An example of the approximate solution of the Cauchy problem for the function of competitive losses and for the initial function of the Gaussian type is considered. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Russian Physics Journal 
463 |t Vol. 62, iss. 4  |v [P. 710-719]  |d 2019 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a onlocal generalized Fisher–Kolmogorov–Petrovsky–Piskunov equation 
610 1 |a approximate solutions 
610 1 |a Adomian’s decomposition method 
610 1 |a diffusion propagator 
610 1 |a уравнение Фишера-Колмогорова-Петровского-Пискунова 
610 1 |a метод разложения 
610 1 |a убывающие функции 
610 1 |a пропагаторы 
610 1 |a линейные операторы 
610 1 |a обратные операторы 
700 1 |a Shapovalov  |b A. V.  |g Aleksandr Vasiljevich 
701 1 |a Trifonov  |b A. Yu.  |c physicist, mathematician  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1963-  |g Andrey Yurievich  |3 (RuTPU)RU\TPU\pers\30754 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Школа базовой инженерной подготовки  |b Отделение математики и информатики  |3 (RuTPU)RU\TPU\col\23555 
801 2 |a RU  |b 63413507  |c 20210908  |g RCR 
856 4 0 |u https://doi.org/10.1007/s11182-019-01768-y 
942 |c CF