Exploring the 3D structure and defects of a self-assembled gold mesocrystal by coherent X-ray diffraction imaging

Bibliographic Details
Parent link:Nanoscale
Vol. 13, iss. 23.— 2021.— [P. 9449-9892]
Corporate Author: Национальный исследовательский Томский политехнический университет Инженерная школа неразрушающего контроля и безопасности Центр промышленной томографии Международная научно-образовательная лаборатория неразрушающего контроля
Other Authors: Carnis J. Jerome, Kirner F. Felizitas, Lapkin D. Dmitry, Sturm S. Sebastian, Kim Young Yong, Baburin I. A. Igor, Khubbutdinov R. M. Ruslan, Ignatenko A., Yashina E. G. Ekaterina Gennadjevna, Mistonov A. A. Aleksandr Andreevich, Steegemans T. Tristan, Wieck T. Thomas, Gemming T. Thomas, Lubk A. Axel, Lazarev S. V. Sergey Vladimirovich
Summary:Title screen
Mesocrystals are nanostructured materials consisting of individual nanocrystals having a preferred crystallographic orientation. On mesoscopic length scales, the properties of mesocrystals are strongly affected by structural heterogeneity. Here, we report the detailed structural characterization of a faceted mesocrystal grain self-assembled from 60 nm sized gold nanocubes. Using coherent X-ray diffraction imaging, we determined the structure of the mesocrystal with the resolution sufficient to resolve each gold nanoparticle. The reconstructed electron density of the gold mesocrystal reveals its intrinsic structural heterogeneity, including local deviations of lattice parameters, and the presence of internal defects. The strain distribution shows that the average superlattice obtained by angular X-ray cross-correlation analysis and the real, “multidomain” structure of a mesocrystal are very close to each other, with a deviation less than 10%. These results will provide an important impact to understanding the fundamental principles of structuring and self-assembly including ensuing properties of mesocrystals.
Published: 2021
Subjects:
Online Access:https://doi.org/10.1039/D1NR01806J
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=665262

MARC

LEADER 00000naa0a2200000 4500
001 665262
005 20250129140033.0
035 |a (RuTPU)RU\TPU\network\36461 
035 |a RU\TPU\network\36048 
090 |a 665262 
100 |a 20210907d2021 k||y0rusy50 ba 
101 0 |a eng 
102 |a GB 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Exploring the 3D structure and defects of a self-assembled gold mesocrystal by coherent X-ray diffraction imaging  |f J. Carnis, F. Kirner, D. Lapkin [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 58 tit.] 
330 |a Mesocrystals are nanostructured materials consisting of individual nanocrystals having a preferred crystallographic orientation. On mesoscopic length scales, the properties of mesocrystals are strongly affected by structural heterogeneity. Here, we report the detailed structural characterization of a faceted mesocrystal grain self-assembled from 60 nm sized gold nanocubes. Using coherent X-ray diffraction imaging, we determined the structure of the mesocrystal with the resolution sufficient to resolve each gold nanoparticle. The reconstructed electron density of the gold mesocrystal reveals its intrinsic structural heterogeneity, including local deviations of lattice parameters, and the presence of internal defects. The strain distribution shows that the average superlattice obtained by angular X-ray cross-correlation analysis and the real, “multidomain” structure of a mesocrystal are very close to each other, with a deviation less than 10%. These results will provide an important impact to understanding the fundamental principles of structuring and self-assembly including ensuing properties of mesocrystals. 
461 |t Nanoscale 
463 |t Vol. 13, iss. 23  |v [P. 9449-9892]  |d 2021 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a трехмерные структуры 
610 1 |a дефекты 
610 1 |a золото 
610 1 |a рентгеновская дифракция 
610 1 |a наноструктурированные материалы 
610 1 |a нанокристаллы 
610 1 |a мезокристаллы 
701 1 |a Carnis  |b J.  |g Jerome 
701 1 |a Kirner  |b F.  |g Felizitas 
701 1 |a Lapkin  |b D.  |g Dmitry 
701 1 |a Sturm  |b S.  |g Sebastian 
701 0 |a Kim Young Yong 
701 1 |a Baburin  |b I. A.  |g Igor 
701 1 |a Khubbutdinov  |b R. M.  |g Ruslan 
701 1 |a Ignatenko  |b A. 
701 1 |a Yashina  |b E. G.  |g Ekaterina Gennadjevna 
701 1 |a Mistonov  |b A. A.  |g Aleksandr Andreevich 
701 1 |a Steegemans  |b T.  |g Tristan 
701 1 |a Wieck  |b T.  |g Thomas 
701 1 |a Gemming  |b T.  |g Thomas 
701 1 |a Lubk  |b A.  |g Axel 
701 1 |a Lazarev  |b S. V.  |c physicist  |c engineer at Tomsk Polytechnic University  |f 1984-  |g Sergey Vladimirovich  |3 (RuTPU)RU\TPU\pers\35210 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа неразрушающего контроля и безопасности  |b Центр промышленной томографии  |b Международная научно-образовательная лаборатория неразрушающего контроля  |3 (RuTPU)RU\TPU\col\19961 
801 2 |a RU  |b 63413507  |c 20210907  |g RCR 
856 4 |u https://doi.org/10.1039/D1NR01806J 
942 |c CF