Review of Hybrid Materials Based on Polyhydroxyalkanoates for Tissue Engineering Applications

Dettagli Bibliografici
Parent link:Polymers
Vol. 13, iss. 11.— 2021.— [1738, 32 p.]
Autore principale: Pryadko A. Artyom
Ente Autore: Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий
Altri autori: Surmenev R. A. Roman Anatolievich, Surmeneva M. A. Maria Alexandrovna
Riassunto:Title screen
This review is focused on hybrid polyhydroxyalkanoate-based (PHA) biomaterials with improved physico-mechanical, chemical, and piezoelectric properties and controlled biodegradation rate for applications in bone, cartilage, nerve and skin tissue engineering. PHAs are polyesters produced by a wide range of bacteria under unbalanced growth conditions. They are biodegradable, biocompatible, and piezoelectric polymers, which make them very attractive biomaterials for various biomedical applications. As naturally derived materials, PHAs have been used for multiple cell and tissue engineering applications; however, their widespread biomedical applications are limited due to their lack of toughness, elasticity, hydrophilicity and bioactivity. The chemical structure of PHAs allows them to combine with other polymers or inorganic materials to form hybrid composites with improved structural and functional properties. Their type (films, fibers, and 3D printed scaffolds) and properties can be tailored with fabrication methods and materials used as fillers. Here, we are aiming to fill in a gap in literature, revealing an up-to-date overview of ongoing research strategies that make use of PHAs as versatile and prospective biomaterials. In this work, a systematic and detailed review of works investigating PHA-based hybrid materials with tailored properties and performance for use in tissue engineering applications is carried out. A literature survey revealed that PHA-based composites have better performance for use in tissue regeneration applications than pure PHA.
Lingua:inglese
Pubblicazione: 2021
Soggetti:
Accesso online:https://doi.org/10.3390/polym13111738
Natura: Elettronico Capitolo di libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=665233

MARC

LEADER 00000naa0a2200000 4500
001 665233
005 20250129133949.0
035 |a (RuTPU)RU\TPU\network\36432 
035 |a RU\TPU\network\35937 
090 |a 665233 
100 |a 20210906d2021 k||y0rusy50 ba 
101 0 |a eng 
102 |a CH 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Review of Hybrid Materials Based on Polyhydroxyalkanoates for Tissue Engineering Applications  |f A. Pryadko, R. A. Surmenev, M. A. Surmeneva 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 169 tit.] 
330 |a This review is focused on hybrid polyhydroxyalkanoate-based (PHA) biomaterials with improved physico-mechanical, chemical, and piezoelectric properties and controlled biodegradation rate for applications in bone, cartilage, nerve and skin tissue engineering. PHAs are polyesters produced by a wide range of bacteria under unbalanced growth conditions. They are biodegradable, biocompatible, and piezoelectric polymers, which make them very attractive biomaterials for various biomedical applications. As naturally derived materials, PHAs have been used for multiple cell and tissue engineering applications; however, their widespread biomedical applications are limited due to their lack of toughness, elasticity, hydrophilicity and bioactivity. The chemical structure of PHAs allows them to combine with other polymers or inorganic materials to form hybrid composites with improved structural and functional properties. Their type (films, fibers, and 3D printed scaffolds) and properties can be tailored with fabrication methods and materials used as fillers. Here, we are aiming to fill in a gap in literature, revealing an up-to-date overview of ongoing research strategies that make use of PHAs as versatile and prospective biomaterials. In this work, a systematic and detailed review of works investigating PHA-based hybrid materials with tailored properties and performance for use in tissue engineering applications is carried out. A literature survey revealed that PHA-based composites have better performance for use in tissue regeneration applications than pure PHA. 
461 |t Polymers 
463 |t Vol. 13, iss. 11  |v [1738, 32 p.]  |d 2021 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a polyhydroxyalkanoates 
610 1 |a biopolymers 
610 1 |a biocompatibility 
610 1 |a biodegradibility 
610 1 |a composites 
610 1 |a modification 
610 1 |a биополимеры 
610 1 |a биосовместимость 
610 1 |a биоразлагаемые полимеры 
610 1 |a композиты 
610 1 |a модификации 
610 1 |a гибридные материалы 
610 1 |a тканевая инженерия 
610 1 |a полигидроксиалканоаты 
700 1 |a Pryadko  |b A.  |c Specialist in the field of nuclear technologies  |c Research Engineer of Tomsk Polytechnic University  |f 1995-  |g Artyom  |3 (RuTPU)RU\TPU\pers\46948 
701 1 |a Surmenev  |b R. A.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Senior researcher, Candidate of physical and mathematical sciences  |f 1982-  |g Roman Anatolievich  |3 (RuTPU)RU\TPU\pers\31885  |9 15957 
701 1 |a Surmeneva  |b M. A.  |c specialist in the field of material science  |c engineer-researcher of Tomsk Polytechnic University, Associate Scientist  |f 1984-  |g Maria Alexandrovna  |3 (RuTPU)RU\TPU\pers\31894  |9 15966 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа химических и биомедицинских технологий  |c (2017- )  |3 (RuTPU)RU\TPU\col\23537 
801 2 |a RU  |b 63413507  |c 20210906  |g RCR 
856 4 |u https://doi.org/10.3390/polym13111738 
942 |c CF