The application of machine learning to predictions of optical turbulence in the surface layer at Baikal Astrophysical Observatory

Podrobná bibliografie
Parent link:Monthly Notices of the Royal Astronomical Society
Vol 504, iss. 4.— 2021.— [P. 6008–6017]
Hlavní autor: Bolbasova L. A. Lidiya Adolfovna
Korporativní autor: Национальный исследовательский Томский политехнический университет Инженерная школа информационных технологий и робототехники Отделение автоматизации и робототехники
Další autoři: Andrakhanov A. A. Anatoliy Aleksandrovich, Shikhovtsev A. Yu. Artem Yurjevich
Shrnutí:Title screen
In this study, we apply machine learning to predict optical turbulence in the surface layer at the Baikal Astrophysical Observatory. Advance knowledge of optical turbulence is important for maximizing the efficiency of adaptive optics systems, telescope operations, and the scheduling of the planned observations. Typically, optical turbulence is characterized by the structure constant of the refractive index of air C2nCn2⁠. The Monin-Obukhov similarity theory (MOST) provides a scientific basis for estimating the structure constant of the refractive index from meteorological variables in the surface layer. However, the MOST becomes unreliable for stable atmospheric conditions, which occurred for more periods regardless of the time of day at the Baikal Astrophysical Observatory. We propose the application of a neural network based on the group method of data handling (GMDH), one of the earliest deep-learning techniques, to predict the surface-layer refractive-index structure constant. The magnitudes of the predicted values of the structure constant of the refractive index and measurements are in agreement. Correlation coefficients ranging from 0.79-0.91 for a stably stratified atmosphere have been obtained. The explicit analytical expression is an advantage of the proposed approach, in contrast to many other machine-learning techniques that have a black-box model.
Режим доступа: по договору с организацией-держателем ресурса
Jazyk:angličtina
Vydáno: 2021
Témata:
On-line přístup:https://doi.org/10.1093/mnras/stab953
Médium: Elektronický zdroj Kapitola
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=665228

MARC

LEADER 00000naa0a2200000 4500
001 665228
005 20250128170201.0
035 |a (RuTPU)RU\TPU\network\36427 
035 |a RU\TPU\network\33886 
090 |a 665228 
100 |a 20210903d2021 k||y0rusy50 ba 
101 0 |a eng 
102 |a GB 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a The application of machine learning to predictions of optical turbulence in the surface layer at Baikal Astrophysical Observatory  |f L. A. Bolbasova, A. A. Andrakhanov, A. Yu. Shikhovtsev 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a In this study, we apply machine learning to predict optical turbulence in the surface layer at the Baikal Astrophysical Observatory. Advance knowledge of optical turbulence is important for maximizing the efficiency of adaptive optics systems, telescope operations, and the scheduling of the planned observations. Typically, optical turbulence is characterized by the structure constant of the refractive index of air C2nCn2⁠. The Monin-Obukhov similarity theory (MOST) provides a scientific basis for estimating the structure constant of the refractive index from meteorological variables in the surface layer. However, the MOST becomes unreliable for stable atmospheric conditions, which occurred for more periods regardless of the time of day at the Baikal Astrophysical Observatory. We propose the application of a neural network based on the group method of data handling (GMDH), one of the earliest deep-learning techniques, to predict the surface-layer refractive-index structure constant. The magnitudes of the predicted values of the structure constant of the refractive index and measurements are in agreement. Correlation coefficients ranging from 0.79-0.91 for a stably stratified atmosphere have been obtained. The explicit analytical expression is an advantage of the proposed approach, in contrast to many other machine-learning techniques that have a black-box model. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Monthly Notices of the Royal Astronomical Society 
463 |t Vol 504, iss. 4  |v [P. 6008–6017]  |d 2021 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a turbulence 
610 1 |a atmospheric effects 
610 1 |a instrumentation 
610 1 |a adaptive optics 
610 1 |a site testing 
610 1 |a telescopes 
610 1 |a турбулентность 
610 1 |a атмосферные явления 
610 1 |a адаптивная оптика 
610 1 |a телескопы 
610 1 |a машинное обучение 
610 1 |a приземные слои 
610 1 |a астрофизические обсерватории 
700 1 |a Bolbasova  |b L. A.  |g Lidiya Adolfovna 
701 1 |a Andrakhanov  |b A. A.  |c Specialist in the field of electrical engineering  |c Assistant of the Department of Tomsk Polytechnic University  |f 1982-  |g Anatoliy Aleksandrovich  |3 (RuTPU)RU\TPU\pers\38561  |9 20819 
701 1 |a Shikhovtsev  |b A. Yu.  |g Artem Yurjevich 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа информационных технологий и робототехники  |b Отделение автоматизации и робототехники  |3 (RuTPU)RU\TPU\col\23553 
801 2 |a RU  |b 63413507  |c 20210903  |g RCR 
856 4 |u https://doi.org/10.1093/mnras/stab953 
942 |c CF