Advanced optimization technique for scheduling IoT tasks in cloud-fog computing environments

Bibliographic Details
Parent link:Future Generation Computer Systems
Vol. 124.— 2021.— [P. 142-154]
Main Author: Mokhamed Elsaed A. M. Akhmed Mokhamed
Corporate Author: Национальный исследовательский Томский политехнический университет Инженерная школа информационных технологий и робототехники Отделение информационных технологий
Other Authors: Abualigah L. Laith, Attiya I. Ibrahim
Summary:Title screen
Cloud-fog computing frameworks are emerging paradigms developed to add benefits to the current Internet of Things (IoT) architectures. In such frameworks, task scheduling plays a key role, and the optimized schedule of IoT task requests can improve system performance and productivity. In this paper, we developed an alternative task scheduling technique for IoT requests in a cloud-fog environment based on a modified artificial ecosystem-based optimization (AEO), called AEOSSA. This modification is developed using the operators of the Salp Swarm Algorithm (SSA) in an attempt to enhance the exploitation ability of AEO during the process of finding the optimal solution for the problem under consideration. The performance of the designed AEOSSA approach to tackling the task scheduling problem is evaluated using different synthetic and real-world datasets of different sizes. In addition, a comparison is conducted between AEOSSA and other well-known metaheuristic methods for performance investigation. The experimental results demonstrate the high ability of AEOSSA to tackle the task scheduling problem and perform better than other methods according to the performance metrics such as makespan time and throughput.
Language:English
Published: 2021
Subjects:
Online Access:https://doi.org/10.1016/j.future.2021.05.026
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=665196

MARC

LEADER 00000naa0a2200000 4500
001 665196
005 20250128160125.0
035 |a (RuTPU)RU\TPU\network\36395 
035 |a RU\TPU\network\33956 
090 |a 665196 
100 |a 20210830d2021 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Advanced optimization technique for scheduling IoT tasks in cloud-fog computing environments  |f A. M. Mokhamed Elsaed, L. Abualigah, I. Attiya 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a Cloud-fog computing frameworks are emerging paradigms developed to add benefits to the current Internet of Things (IoT) architectures. In such frameworks, task scheduling plays a key role, and the optimized schedule of IoT task requests can improve system performance and productivity. In this paper, we developed an alternative task scheduling technique for IoT requests in a cloud-fog environment based on a modified artificial ecosystem-based optimization (AEO), called AEOSSA. This modification is developed using the operators of the Salp Swarm Algorithm (SSA) in an attempt to enhance the exploitation ability of AEO during the process of finding the optimal solution for the problem under consideration. The performance of the designed AEOSSA approach to tackling the task scheduling problem is evaluated using different synthetic and real-world datasets of different sizes. In addition, a comparison is conducted between AEOSSA and other well-known metaheuristic methods for performance investigation. The experimental results demonstrate the high ability of AEOSSA to tackle the task scheduling problem and perform better than other methods according to the performance metrics such as makespan time and throughput. 
461 |t Future Generation Computer Systems 
463 |t Vol. 124  |v [P. 142-154]  |d 2021 
610 1 |a труды учёных ТПУ 
610 1 |a электронный ресурс 
610 1 |a Internet of things (IoT) 
610 1 |a cloud computing 
610 1 |a fog computing 
610 1 |a task scheduling 
610 1 |a makespan 
610 1 |a artificial ecosystem-based optimization 
610 1 |a salp 
610 1 |a swarm 
610 1 |a algorithm 
610 1 |a интернет вещей 
610 1 |a облачные вычисления 
610 1 |a оптимизация 
610 1 |a экосистемы 
610 1 |a алгоритмы 
700 1 |a Mokhamed Elsaed  |b A. M.  |c Specialist in the field of informatics and computer technology  |c Professor of Tomsk Polytechnic University  |f 1987-  |g Akhmed Mokhamed  |3 (RuTPU)RU\TPU\pers\46943 
701 1 |a Abualigah  |b L.  |g Laith 
701 1 |a Attiya  |b I.  |g Ibrahim 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа информационных технологий и робототехники  |b Отделение информационных технологий  |3 (RuTPU)RU\TPU\col\23515 
801 2 |a RU  |b 63413507  |c 20210830  |g RCR 
856 4 0 |u https://doi.org/10.1016/j.future.2021.05.026 
942 |c CF