Nonsteady-state mathematical modelling of H2SO4-catalysed alkylation of isobutane with alkenes

Podrobná bibliografie
Parent link:Oil & Gas Science and Technology - Revue d'IFP Energies nouvelles
Vol. 76.— 2021.— [36, 13 p.]
Korporativní autor: Национальный исследовательский Томский политехнический университет Инженерная школа природных ресурсов Отделение химической инженерии
Další autoři: Ivashkina E. N. Elena Nikolaevna, Ivanchina E. D. Emilia Dmitrievna, Dolganov I. M. Igor Mikhailovich, Chuzlov V. A. Vyacheslav Alekseevich, Kotelnikov A. A. Aleksandr Aleksandrovich, Dolganova I. O. Irena Olegovna, Khakimov R. A. Rustam Anvarovich
Shrnutí:Title screen
H2SO4-catalysed isobutane alkylation with alkenes is an important industrial process used to obtain high-octane alkylate. In this process, the concentration of H2SO4 is one of the main parameters. For alkylation, sulphuric acid containing 88%-98% monohydrate is typically used. However, only a H2SO4 concentration of 95%-96% enables alkylate with the maximum octane number to be obtained. Changes in H2SO4 concentration due to decontamination are the main cause of process variations. Therefore, it is necessary to maintain the reactor acid concentration at a constant level by regulating the supply of fresh catalyst and pumping out any spent acid. The main reasons for the decrease in the H2SO4 concentration are accumulation of high-molecular organic compounds and dilution by water. One way to improve and predict unsteady alkylation processes is to develop a mathematical model that considers catalyst deactivation. In the present work, the formation reactions of undesired substances were used in the description of the alkylation process, indicating the sensitivity of the prediction to H2SO4 activity variations. This was used for calculation the optimal technological modes ensuring the maximum selectivity and stability of the chemical-technological system under varying hydrocarbon feedstock compositions.
Jazyk:angličtina
Vydáno: 2021
Témata:
On-line přístup:https://doi.org/10.2516/ogst/2021017
Médium: Elektronický zdroj Kapitola
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=665173

MARC

LEADER 00000naa0a2200000 4500
001 665173
005 20250128140433.0
035 |a (RuTPU)RU\TPU\network\36372 
035 |a RU\TPU\network\34461 
090 |a 665173 
100 |a 20210826d2021 k||y0rusy50 ba 
101 0 |a eng 
102 |a FR 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Nonsteady-state mathematical modelling of H2SO4-catalysed alkylation of isobutane with alkenes  |f E. N. Ivashkina, E. D. Ivanchina, I. M. Dolganov [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 38 tit.] 
330 |a H2SO4-catalysed isobutane alkylation with alkenes is an important industrial process used to obtain high-octane alkylate. In this process, the concentration of H2SO4 is one of the main parameters. For alkylation, sulphuric acid containing 88%-98% monohydrate is typically used. However, only a H2SO4 concentration of 95%-96% enables alkylate with the maximum octane number to be obtained. Changes in H2SO4 concentration due to decontamination are the main cause of process variations. Therefore, it is necessary to maintain the reactor acid concentration at a constant level by regulating the supply of fresh catalyst and pumping out any spent acid. The main reasons for the decrease in the H2SO4 concentration are accumulation of high-molecular organic compounds and dilution by water. One way to improve and predict unsteady alkylation processes is to develop a mathematical model that considers catalyst deactivation. In the present work, the formation reactions of undesired substances were used in the description of the alkylation process, indicating the sensitivity of the prediction to H2SO4 activity variations. This was used for calculation the optimal technological modes ensuring the maximum selectivity and stability of the chemical-technological system under varying hydrocarbon feedstock compositions. 
461 |t Oil & Gas Science and Technology - Revue d'IFP Energies nouvelles 
463 |t Vol. 76  |v [36, 13 p.]  |d 2021 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a математическое моделирование 
610 1 |a алкилирование 
610 1 |a изобутан 
610 1 |a алкены 
610 1 |a алкилаты 
610 1 |a углеводородное сырье 
610 1 |a химико-технологические системы 
610 1 |a серная кислота 
701 1 |a Ivashkina  |b E. N.  |c Chemical Engineer  |c Professor of Tomsk Polytechnic University, Doctor of technical sciences  |f 1983-  |g Elena Nikolaevna  |3 (RuTPU)RU\TPU\pers\31275  |9 15453 
701 1 |a Ivanchina  |b E. D.  |c chemist  |c Professor of Tomsk Polytechnic University, Doctor of technical sciences  |f 1951-  |g Emilia Dmitrievna  |3 (RuTPU)RU\TPU\pers\31274 
701 1 |a Dolganov  |b I. M.  |c Chemical Engineer  |c Associate Professor of Tomsk Polytechnic University, Candidate of Technical Sciences  |f 1987-  |g Igor Mikhailovich  |3 (RuTPU)RU\TPU\pers\32216  |9 16216 
701 1 |a Chuzlov  |b V. A.  |c chemist  |c Associate Professor of Tomsk Polytechnic University, Candidate of Technical Sciences  |f 1991-  |g Vyacheslav Alekseevich  |3 (RuTPU)RU\TPU\pers\33898  |9 17471 
701 1 |a Kotelnikov  |b A. A.  |g Aleksandr Aleksandrovich 
701 1 |a Dolganova  |b I. O.  |c chemist  |c Associate Scientist of Tomsk Polytechnic University, postgraduate student, candidate of technical Sciences  |f 1988-  |g Irena Olegovna  |3 (RuTPU)RU\TPU\pers\31271  |9 15449 
701 1 |a Khakimov  |b R. A.  |g Rustam Anvarovich 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа природных ресурсов  |b Отделение химической инженерии  |3 (RuTPU)RU\TPU\col\23513 
801 2 |a RU  |b 63413507  |c 20210826  |g RCR 
856 4 |u https://doi.org/10.2516/ogst/2021017 
942 |c CF