Dynamic Virtual Resource Allocation for 5G and Beyond Network Slicing

Bibliographische Detailangaben
Parent link:IEEE Open Journal of Vehicular Technology
Vol. 1.— 2020.— [P. 215-226]
Körperschaft: Национальный исследовательский Томский политехнический университет Инженерная школа информационных технологий и робототехники Научно-образовательный центр "Автоматизация и информационные технологии"
Weitere Verfasser: Song Fey, Li Iyun, Ma Chuan, Chzhan Itszin, Shi Long, Dzhayakodi (Jayakody) Arachshiladzh D. N. K. Dushanta Nalin Kumara
Zusammenfassung:Title screen
The fifth generation and beyond wireless communication will support vastly heterogeneous services and user demands such as massive connection, low latency and high transmission rate. Network slicing has been envisaged as an efficient technology to meet these diverse demands. In this paper, we propose a dynamic virtual resources allocation scheme based on the radio access network (RAN) slicing for uplink communications to ensure the quality-of-service (QoS). To maximum the weighted-sum transmission rate performance under delay constraint, formulate a joint optimization problem of subchannel allocation and power control as an infinite-horizon average-reward constrained Markov decision process (CMDP) problem. Based on the equivalent Bellman equation, the optimal control policy is first derived by the value iteration algorithm. However, the optimal policy suffers from the widely known curse-of-dimensionality problem. To address this problem, the linear value function approximation (approximate dynamic programming) is adopted. Then, the subchannel allocation Q-factor is decomposed into the per-slice Q-factor. Furthermore, the Q-factor and Lagrangian multipliers are updated by the use of an online stochastic learning algorithm. Finally, simulation results reveal that the proposed algorithm can meet the delay requirements and improve the user transmission rate compared with baseline schemes.
Sprache:Englisch
Veröffentlicht: 2020
Schlagworte:
Online-Zugang:https://doi.org/10.1109/OJVT.2020.2990072
Format: Elektronisch Buchkapitel
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=665167

MARC

LEADER 00000naa0a2200000 4500
001 665167
005 20250128135609.0
035 |a (RuTPU)RU\TPU\network\36366 
035 |a RU\TPU\network\36359 
090 |a 665167 
100 |a 20210826d2020 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Dynamic Virtual Resource Allocation for 5G and Beyond Network Slicing  |f Song Fey, Li Iyun, Ma Chuan [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 33 tit.] 
330 |a The fifth generation and beyond wireless communication will support vastly heterogeneous services and user demands such as massive connection, low latency and high transmission rate. Network slicing has been envisaged as an efficient technology to meet these diverse demands. In this paper, we propose a dynamic virtual resources allocation scheme based on the radio access network (RAN) slicing for uplink communications to ensure the quality-of-service (QoS). To maximum the weighted-sum transmission rate performance under delay constraint, formulate a joint optimization problem of subchannel allocation and power control as an infinite-horizon average-reward constrained Markov decision process (CMDP) problem. Based on the equivalent Bellman equation, the optimal control policy is first derived by the value iteration algorithm. However, the optimal policy suffers from the widely known curse-of-dimensionality problem. To address this problem, the linear value function approximation (approximate dynamic programming) is adopted. Then, the subchannel allocation Q-factor is decomposed into the per-slice Q-factor. Furthermore, the Q-factor and Lagrangian multipliers are updated by the use of an online stochastic learning algorithm. Finally, simulation results reveal that the proposed algorithm can meet the delay requirements and improve the user transmission rate compared with baseline schemes. 
461 |t IEEE Open Journal of Vehicular Technology 
463 |t Vol. 1  |v [P. 215-226]  |d 2020 
610 1 |a труды учёных ТПУ 
610 1 |a электронный ресурс 
610 1 |a network slicing 
610 1 |a RAN slicing 
610 1 |a constrained Markov decision process (CMDP) 
610 1 |a resource allocation 
610 1 |a сети 
610 1 |a марковский процесс 
610 1 |a принятие решений 
610 1 |a распределения 
610 1 |a ресурсы 
610 1 |a беспроводная связь 
610 1 |a динамическое программирование 
610 1 |a передача данных 
610 1 |a алгоритмы 
701 0 |a Song Fey 
701 0 |a Li Iyun 
701 0 |a Ma Chuan 
701 0 |a Chzhan Itszin 
701 0 |a Shi Long 
701 1 |a Dzhayakodi (Jayakody) Arachshiladzh  |b D. N. K.  |c specialist in the field of electronics  |c Professor of Tomsk Polytechnic University  |f 1983-  |g Dushanta Nalin Kumara  |3 (RuTPU)RU\TPU\pers\37962  |9 20606 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа информационных технологий и робототехники  |b Научно-образовательный центр "Автоматизация и информационные технологии"  |3 (RuTPU)RU\TPU\col\27515 
801 2 |a RU  |b 63413507  |c 20210826  |g RCR 
856 4 0 |u https://doi.org/10.1109/OJVT.2020.2990072 
942 |c CF