Nonlinear Electrophysical Phenomena in Ionic Dielectrics with a Complicated Crystal Structure

Մատենագիտական մանրամասներ
Parent link:Russian Physics Journal
Vol. 63, iss. 2.— 2020.— [P. 282-289]
Համատեղ հեղինակ: Национальный исследовательский Томский политехнический университет Исследовательская школа физики высокоэнергетических процессов
Այլ հեղինակներ: Kalytka V. A. Valery Aleksandrovich, Mekhtiev A. Ali, Bashirov A. V. Aleksandr Vasiljevich, Yurchenko A. V. Aleksey Vasilievich, Alkina A. D. Aliya Dauletkhanovna
Ամփոփում:Title screen
The methods of quasi-classical kinetic theory are used to study the phenomena of nonlinear relaxation polarization in ionic dielectrics with a complicated crystal lattice structure (layered crystals, ceramics, perovskites, vermiculites, etc.) characterized by high ionic conductivity. A special case of materials of this class are proton semiconductors and dielectrics (mica, talc, pyrophyllite, etc.) characterized by high proton conductivity in fairly wide ranges of field parameters (100 kV/m - 1000 MV/m) and temperatures (1-1500 K). Based on the continuity equation for the ion current, a generalized kinetic equation is constructed that describes transfer of electric charge in ionic dielectrics in an alternating polarizing field with blocking electrodes. The nonlinearity of the mathematical model is ensured by the dependences of the diffusion coefficients and ion mobility on the parameters of the inhomogeneous electric field in the dielectric. It is shown that the Fokker-Planck equation, known in the kinetic theory, is a zero approximation of the generalized nonlinear kinetic equation with respect to a small dimensionless parameter.
The dielectric polarization is written from the solution of the Fokker-Planck equation in the infinite approximation of the perturbation theory (k = 1, 2, 3, ...) for an arbitrary value of the multiplicity factor r over the alternating field frequency. The spectra of a complex dielectric permittivity constructed at the fundamental frequency of the alternating field (r = 1) taking into account all subsequent (starting from the second one) approximations of the perturbation theory (k > 1) differ significantly from the classical laws of the Debye dispersion (corresponding to the first approximation of the perturbation theory (k = 1)). The theoretical foundations have been laid for the program algorithms of computer prediction of properties and parameters of electrical materials for the functional elements of the microelectronic device circuits, isolation technology, and non-volatile high-speed memory devices.
Режим доступа: по договору с организацией-держателем ресурса
Լեզու:անգլերեն
Հրապարակվել է: 2020
Խորագրեր:
Առցանց հասանելիություն:https://doi.org/10.1007/s11182-020-02033-3
Ձևաչափ: Էլեկտրոնային Գրքի գլուխ
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=665158

MARC

LEADER 00000naa0a2200000 4500
001 665158
005 20250128133603.0
035 |a (RuTPU)RU\TPU\network\36357 
035 |a RU\TPU\network\33423 
090 |a 665158 
100 |a 20210826d2020 k||y0rusy50 ba 
101 0 |a eng 
135 |a drgn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Nonlinear Electrophysical Phenomena in Ionic Dielectrics with a Complicated Crystal Structure  |f V. A. Kalytka, A. Mekhtiev, A. V. Bashirov [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 20 tit.] 
330 |a The methods of quasi-classical kinetic theory are used to study the phenomena of nonlinear relaxation polarization in ionic dielectrics with a complicated crystal lattice structure (layered crystals, ceramics, perovskites, vermiculites, etc.) characterized by high ionic conductivity. A special case of materials of this class are proton semiconductors and dielectrics (mica, talc, pyrophyllite, etc.) characterized by high proton conductivity in fairly wide ranges of field parameters (100 kV/m - 1000 MV/m) and temperatures (1-1500 K). Based on the continuity equation for the ion current, a generalized kinetic equation is constructed that describes transfer of electric charge in ionic dielectrics in an alternating polarizing field with blocking electrodes. The nonlinearity of the mathematical model is ensured by the dependences of the diffusion coefficients and ion mobility on the parameters of the inhomogeneous electric field in the dielectric. It is shown that the Fokker-Planck equation, known in the kinetic theory, is a zero approximation of the generalized nonlinear kinetic equation with respect to a small dimensionless parameter. 
330 |a The dielectric polarization is written from the solution of the Fokker-Planck equation in the infinite approximation of the perturbation theory (k = 1, 2, 3, ...) for an arbitrary value of the multiplicity factor r over the alternating field frequency. The spectra of a complex dielectric permittivity constructed at the fundamental frequency of the alternating field (r = 1) taking into account all subsequent (starting from the second one) approximations of the perturbation theory (k > 1) differ significantly from the classical laws of the Debye dispersion (corresponding to the first approximation of the perturbation theory (k = 1)). The theoretical foundations have been laid for the program algorithms of computer prediction of properties and parameters of electrical materials for the functional elements of the microelectronic device circuits, isolation technology, and non-volatile high-speed memory devices. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Russian Physics Journal 
463 |t Vol. 63, iss. 2  |v [P. 282-289]  |d 2020 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a ionic conductors 
610 1 |a ionic dielectrics with a complicated crystal lattice structure 
610 1 |a proton semiconductors and dielectrics 
610 1 |a complex dielectric permittivity 
610 1 |a methods of the quasi-classical kinetic theory 
610 1 |a nonlinear kinetic equation of ionic relaxation and conductivity 
610 1 |a method of successive approximations 
610 1 |a ионные диэлектрики 
610 1 |a полупроводники 
610 1 |a диэлектрическая проницаемость 
610 1 |a проводимость 
610 1 |a электрофизические явления 
610 1 |a кристаллические структуры 
701 1 |a Kalytka  |b V. A.  |g Valery Aleksandrovich 
701 1 |a Mekhtiev  |b A.  |g Ali 
701 1 |a Bashirov  |b A. V.  |g Aleksandr Vasiljevich 
701 1 |a Yurchenko  |b A. V.  |c physicist  |c Professor of Tomsk Polytechnic University, Doctor of Technical Sciences  |f 1974-  |g Aleksey Vasilievich  |3 (RuTPU)RU\TPU\pers\35053  |9 18328 
701 1 |a Alkina  |b A. D.  |g Aliya Dauletkhanovna 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа физики высокоэнергетических процессов  |c (2017- )  |3 (RuTPU)RU\TPU\col\23551 
801 2 |a RU  |b 63413507  |c 20210826  |g RCR 
856 4 0 |u https://doi.org/10.1007/s11182-020-02033-3 
942 |c CF