Physical Principles of Developing Pressure Sensors Using Refractive Index Changes in Optical Fiber Microbending

書誌詳細
Parent link:Russian Physics Journal
Vol. 63, iss. 2.— 2020.— [P. 323-331]
団体著者: Национальный исследовательский Томский политехнический университет Исследовательская школа физики высокоэнергетических процессов
その他の著者: Mekhtiev A. Ali, Yurchenko A. V. Aleksey Vasilievich, Neshina E. G. Elena Gennadjevna, Alkina A. D. Aliya Dauletkhanovna, Madi P. Perizat
要約:Title screen
The paper deals with the physical principles of development of pressure sensors using changes in the refractive index in the optical fiber microbending. The development of a simplified fiber-optic based pressure sensor is considered to be relevant for the mining industry if used as a temperature-compensated pressure sensor to avoid known disadvantages of various optical interferometers. An important point is the use of a G.652 standard single-mode optical fiber, which is also used as a guide for electrical signal transmission. The proposed information measurement system is capable of making remote measurements of the rock pressure on the powered support. The ground expressions are given to describe a physical process of the pressure measurement based on the photoelastic effect observed at microbending. The obtained results of the field experiments prove changes in the diffraction spot configuration at the optical fiber end depending on microbending. The finite element program Ansys Static Structural is used for a simulation of the mechanical stress on the optical fiber causing its microbending. The proposed sensor can detect not only pressure, but also temperature and rock mass microdisplacement and can be used for geotechnical monitoring of mine openings representing the danger of gas and coal dust explosion.
Режим доступа: по договору с организацией-держателем ресурса
言語:英語
出版事項: 2020
主題:
オンライン・アクセス:https://doi.org/10.1007/s11182-020-02038-y
フォーマット: 電子媒体 図書の章
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=665157

MARC

LEADER 00000naa0a2200000 4500
001 665157
005 20250128133458.0
035 |a (RuTPU)RU\TPU\network\36356 
035 |a RU\TPU\network\33421 
090 |a 665157 
100 |a 20210825d2020 k||y0rusy50 ba 
101 0 |a eng 
135 |a drgn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Physical Principles of Developing Pressure Sensors Using Refractive Index Changes in Optical Fiber Microbending  |f A. Mekhtiev, A. V. Yurchenko, E. G. Neshina [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 16 tit.] 
330 |a The paper deals with the physical principles of development of pressure sensors using changes in the refractive index in the optical fiber microbending. The development of a simplified fiber-optic based pressure sensor is considered to be relevant for the mining industry if used as a temperature-compensated pressure sensor to avoid known disadvantages of various optical interferometers. An important point is the use of a G.652 standard single-mode optical fiber, which is also used as a guide for electrical signal transmission. The proposed information measurement system is capable of making remote measurements of the rock pressure on the powered support. The ground expressions are given to describe a physical process of the pressure measurement based on the photoelastic effect observed at microbending. The obtained results of the field experiments prove changes in the diffraction spot configuration at the optical fiber end depending on microbending. The finite element program Ansys Static Structural is used for a simulation of the mechanical stress on the optical fiber causing its microbending. The proposed sensor can detect not only pressure, but also temperature and rock mass microdisplacement and can be used for geotechnical monitoring of mine openings representing the danger of gas and coal dust explosion. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Russian Physics Journal 
463 |t Vol. 63, iss. 2  |v [P. 323-331]  |d 2020 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a optical fiber 
610 1 |a fiber-optic sensor 
610 1 |a pressure 
610 1 |a deformation 
610 1 |a mechanical stress 
610 1 |a wave interference 
610 1 |a light wave 
610 1 |a оптическое волокно 
610 1 |a оптоволоконные датчики 
610 1 |a давление 
610 1 |a механические напряжения 
610 1 |a деформации 
610 1 |a интерференция 
610 1 |a волны 
610 1 |a свет 
701 1 |a Mekhtiev  |b A.  |g Ali 
701 1 |a Yurchenko  |b A. V.  |c physicist  |c Professor of Tomsk Polytechnic University, Doctor of Technical Sciences  |f 1974-  |g Aleksey Vasilievich  |3 (RuTPU)RU\TPU\pers\35053  |9 18328 
701 1 |a Neshina  |b E. G.  |g Elena Gennadjevna 
701 1 |a Alkina  |b A. D.  |g Aliya Dauletkhanovna 
701 1 |a Madi  |b P.  |g Perizat 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа физики высокоэнергетических процессов  |c (2017- )  |3 (RuTPU)RU\TPU\col\23551 
801 2 |a RU  |b 63413507  |c 20210825  |g RCR 
856 4 0 |u https://doi.org/10.1007/s11182-020-02038-y 
942 |c CF