Physical Principles of Developing Pressure Sensors Using Refractive Index Changes in Optical Fiber Microbending
| Parent link: | Russian Physics Journal Vol. 63, iss. 2.— 2020.— [P. 323-331] |
|---|---|
| 団体著者: | |
| その他の著者: | , , , , |
| 要約: | Title screen The paper deals with the physical principles of development of pressure sensors using changes in the refractive index in the optical fiber microbending. The development of a simplified fiber-optic based pressure sensor is considered to be relevant for the mining industry if used as a temperature-compensated pressure sensor to avoid known disadvantages of various optical interferometers. An important point is the use of a G.652 standard single-mode optical fiber, which is also used as a guide for electrical signal transmission. The proposed information measurement system is capable of making remote measurements of the rock pressure on the powered support. The ground expressions are given to describe a physical process of the pressure measurement based on the photoelastic effect observed at microbending. The obtained results of the field experiments prove changes in the diffraction spot configuration at the optical fiber end depending on microbending. The finite element program Ansys Static Structural is used for a simulation of the mechanical stress on the optical fiber causing its microbending. The proposed sensor can detect not only pressure, but also temperature and rock mass microdisplacement and can be used for geotechnical monitoring of mine openings representing the danger of gas and coal dust explosion. Режим доступа: по договору с организацией-держателем ресурса |
| 言語: | 英語 |
| 出版事項: |
2020
|
| 主題: | |
| オンライン・アクセス: | https://doi.org/10.1007/s11182-020-02038-y |
| フォーマット: | 電子媒体 図書の章 |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=665157 |
MARC
| LEADER | 00000naa0a2200000 4500 | ||
|---|---|---|---|
| 001 | 665157 | ||
| 005 | 20250128133458.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\36356 | ||
| 035 | |a RU\TPU\network\33421 | ||
| 090 | |a 665157 | ||
| 100 | |a 20210825d2020 k||y0rusy50 ba | ||
| 101 | 0 | |a eng | |
| 135 | |a drgn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Physical Principles of Developing Pressure Sensors Using Refractive Index Changes in Optical Fiber Microbending |f A. Mekhtiev, A. V. Yurchenko, E. G. Neshina [et al.] | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 320 | |a [References: 16 tit.] | ||
| 330 | |a The paper deals with the physical principles of development of pressure sensors using changes in the refractive index in the optical fiber microbending. The development of a simplified fiber-optic based pressure sensor is considered to be relevant for the mining industry if used as a temperature-compensated pressure sensor to avoid known disadvantages of various optical interferometers. An important point is the use of a G.652 standard single-mode optical fiber, which is also used as a guide for electrical signal transmission. The proposed information measurement system is capable of making remote measurements of the rock pressure on the powered support. The ground expressions are given to describe a physical process of the pressure measurement based on the photoelastic effect observed at microbending. The obtained results of the field experiments prove changes in the diffraction spot configuration at the optical fiber end depending on microbending. The finite element program Ansys Static Structural is used for a simulation of the mechanical stress on the optical fiber causing its microbending. The proposed sensor can detect not only pressure, but also temperature and rock mass microdisplacement and can be used for geotechnical monitoring of mine openings representing the danger of gas and coal dust explosion. | ||
| 333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
| 461 | |t Russian Physics Journal | ||
| 463 | |t Vol. 63, iss. 2 |v [P. 323-331] |d 2020 | ||
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a optical fiber | |
| 610 | 1 | |a fiber-optic sensor | |
| 610 | 1 | |a pressure | |
| 610 | 1 | |a deformation | |
| 610 | 1 | |a mechanical stress | |
| 610 | 1 | |a wave interference | |
| 610 | 1 | |a light wave | |
| 610 | 1 | |a оптическое волокно | |
| 610 | 1 | |a оптоволоконные датчики | |
| 610 | 1 | |a давление | |
| 610 | 1 | |a механические напряжения | |
| 610 | 1 | |a деформации | |
| 610 | 1 | |a интерференция | |
| 610 | 1 | |a волны | |
| 610 | 1 | |a свет | |
| 701 | 1 | |a Mekhtiev |b A. |g Ali | |
| 701 | 1 | |a Yurchenko |b A. V. |c physicist |c Professor of Tomsk Polytechnic University, Doctor of Technical Sciences |f 1974- |g Aleksey Vasilievich |3 (RuTPU)RU\TPU\pers\35053 |9 18328 | |
| 701 | 1 | |a Neshina |b E. G. |g Elena Gennadjevna | |
| 701 | 1 | |a Alkina |b A. D. |g Aliya Dauletkhanovna | |
| 701 | 1 | |a Madi |b P. |g Perizat | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |b Исследовательская школа физики высокоэнергетических процессов |c (2017- ) |3 (RuTPU)RU\TPU\col\23551 |
| 801 | 2 | |a RU |b 63413507 |c 20210825 |g RCR | |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s11182-020-02038-y |
| 942 | |c CF | ||