Predicting Temporal Gait Kinematics: Anthropometric Characteristics and Global Running Pattern Matter

Dades bibliogràfiques
Parent link:Frontiers in Physiology
Vol. 11.— 2021.— [625557, 11 p.]
Autor corporatiu: Национальный исследовательский Томский политехнический университет Школа базовой инженерной подготовки Отделение физической культуры
Altres autors: Patoz A. Aurelien, Lussiana T. Thibault, Gindre C. Cyrille, Mourot L. Laurent
Sumari:Title screen
Equations predicting stride frequency (SF) and duty factor (DF) solely based on running speed have been proposed. However, for a given speed, kinematics vary depending on the global running pattern (GRP), i.e., the overall individual movement while running, which depends on the vertical oscillation of the head, antero-posterior motion of the elbows, vertical pelvis position at ground contact, antero-posterior foot position at ground contact, and strike pattern. Hence, we first verified the validity of the aforementioned equations while accounting for GRP. Kinematics during three 50-m runs on a track (n=20) were used with curve fitting and linear mixed effects models. The percentage of explained variance was increased by >=133% for DF when taking into account GRP. GRP was negatively related to DF (p=0.004) but not to SF (p=0.08), invalidating DF equation. Second, we assessed which parameters among anthropometric characteristics, sex, training volume, and GRP could relate to SF and DF in addition to speed, using kinematic data during five 30-s runs on a treadmill (n=54). SF and DF linearly increased and quadratically decreased with speed (p<0.001), respectively. However, on an individual level, SF was best described using a second-order polynomial equation. SF and DF showed a non-negligible percentage of variance explained by random effects (>=28%). Age and height were positively and negatively related to SF (p<=0.05), respectively, while GRP was negatively related to DF (p<0.001), making them key parameters to estimate SF and DF, respectively, in addition to speed.
Idioma:anglès
Publicat: 2021
Matèries:
Accés en línia:https://doi.org/10.3389/fphys.2020.625557
Format: Electrònic Capítol de llibre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=665140

MARC

LEADER 00000naa0a2200000 4500
001 665140
005 20250127162926.0
035 |a (RuTPU)RU\TPU\network\36339 
035 |a RU\TPU\network\33626 
090 |a 665140 
100 |a 20210825d2021 k||y0rusy50 ba 
101 0 |a eng 
102 |a CH 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Predicting Temporal Gait Kinematics: Anthropometric Characteristics and Global Running Pattern Matter  |f A. Patoz, T. Lussiana, C. Gindre, L. Mourot 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 40 tit.] 
330 |a Equations predicting stride frequency (SF) and duty factor (DF) solely based on running speed have been proposed. However, for a given speed, kinematics vary depending on the global running pattern (GRP), i.e., the overall individual movement while running, which depends on the vertical oscillation of the head, antero-posterior motion of the elbows, vertical pelvis position at ground contact, antero-posterior foot position at ground contact, and strike pattern. Hence, we first verified the validity of the aforementioned equations while accounting for GRP. Kinematics during three 50-m runs on a track (n=20) were used with curve fitting and linear mixed effects models. The percentage of explained variance was increased by >=133% for DF when taking into account GRP. GRP was negatively related to DF (p=0.004) but not to SF (p=0.08), invalidating DF equation. Second, we assessed which parameters among anthropometric characteristics, sex, training volume, and GRP could relate to SF and DF in addition to speed, using kinematic data during five 30-s runs on a treadmill (n=54). SF and DF linearly increased and quadratically decreased with speed (p<0.001), respectively. However, on an individual level, SF was best described using a second-order polynomial equation. SF and DF showed a non-negligible percentage of variance explained by random effects (>=28%). Age and height were positively and negatively related to SF (p<=0.05), respectively, while GRP was negatively related to DF (p<0.001), making them key parameters to estimate SF and DF, respectively, in addition to speed. 
461 |t Frontiers in Physiology 
463 |t Vol. 11  |v [625557, 11 p.]  |d 2021 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a biomechanics 
610 1 |a running 
610 1 |a running speed 
610 1 |a stride frequency 
610 1 |a duty factor 
610 1 |a predictive equation 
610 1 |a биомеханика 
610 1 |a бег 
610 1 |a скорость 
610 1 |a прогнозирование 
610 1 |a кинематика 
610 1 |a антропометрические данные 
701 1 |a Patoz  |b A.  |g Aurelien 
701 1 |a Lussiana  |b T.  |g Thibault 
701 1 |a Gindre  |b C.  |g Cyrille 
701 1 |a Mourot  |b L.  |c specialist in the field of physical training and sports  |c Senior Researcher of Tomsk Polytechnic University, Candidate of philological sciences  |f 1977-  |g Laurent  |3 (RuTPU)RU\TPU\pers\41001 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Школа базовой инженерной подготовки  |b Отделение физической культуры  |3 (RuTPU)RU\TPU\col\23545 
801 2 |a RU  |b 63413507  |c 20220624  |g RCR 
856 4 |u https://doi.org/10.3389/fphys.2020.625557 
942 |c CF