Comparative study of the structure, properties, and corrosion behavior of Sr-containing biocoatings on Mg0.8Ca

Bibliographic Details
Parent link:Materials
Vol. 13 iss. 8.— 2020.— [1942, 21 p.]
Corporate Author: Национальный исследовательский Томский политехнический университет Исследовательская школа физики высокоэнергетических процессов
Other Authors: Sedelnikova M. B. Mariya Borisovna, Sharkeev Yu. P. Yury Petrovich, Tolkacheva T. V. Tatjyana Viktorovna, Khimich M. A. Margarita Andreevna, Bakina O. V. Olga Vladimirovna, Fomenko A. N. Alla Nikolaevna, Kazakbaeva A. A. Aygerim Azamatovna, Fadeeva I. V. Inna Vilorovna, Egorkin V. S. Vladimir Sergeevich, Gnedenkov S. V. Sergey Vasiljevich, Schmidt Ju. M. Jurgen, Loza K. Katerina, Primak O. Oleg, Epple M. Matthias
Summary:Title screen
A comparative analysis of the structure, properties and the corrosion behavior of the micro-arc coatings based on Sr-substituted hydroxyapatite (Sr-HA) and Sr-substituted tricalcium phosphate (Sr-TCP) deposited on Mg0.8Ca alloy substrates was performed. The current density during the formation of the Sr-HA coatings was higher than that for the Sr-TCP coatings. As a result, the Sr-HA coatings were thicker and had a greater surface roughness Ra than the Sr-TCP coatings. In addition, pore sizes of the Sr-HA were almost two times larger. The ratio (Ca+Sr+Mg)/P were equal 1.64 and 1.47 for Sr-HA and Sr-TCP coatings, respectively. Thus, it can be assumed that the composition of Sr-HA and Sr-TCP coatings was predominantly presented by (Sr,Mg)-substituted hydroxyapatite and (Sr,Mg)-substituted tricalcium phosphate. However, the average content of Sr was approximately the same for both types of the coatings and was equal to 1.8 at.%. The Sr-HA coatings were less soluble and had higher corrosion resistance than the Sr-TCP coatings. Cytotoxic tests in vitro demonstrated a higher cell viability after cultivation with extracts of the Sr-HA coatings.
Language:English
Published: 2020
Subjects:
Online Access:https://doi.org/10.3390/ma13081942
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=665134

MARC

LEADER 00000naa0a2200000 4500
001 665134
005 20250127161741.0
035 |a (RuTPU)RU\TPU\network\36333 
035 |a RU\TPU\network\32929 
090 |a 665134 
100 |a 20210824d2020 k||y0rusy50 ba 
101 0 |a eng 
102 |a CH 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Comparative study of the structure, properties, and corrosion behavior of Sr-containing biocoatings on Mg0.8Ca  |f M. B. Sedelnikova, Yu. P. Sharkeev, T. V. Tolkacheva [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 70 tit.] 
330 |a A comparative analysis of the structure, properties and the corrosion behavior of the micro-arc coatings based on Sr-substituted hydroxyapatite (Sr-HA) and Sr-substituted tricalcium phosphate (Sr-TCP) deposited on Mg0.8Ca alloy substrates was performed. The current density during the formation of the Sr-HA coatings was higher than that for the Sr-TCP coatings. As a result, the Sr-HA coatings were thicker and had a greater surface roughness Ra than the Sr-TCP coatings. In addition, pore sizes of the Sr-HA were almost two times larger. The ratio (Ca+Sr+Mg)/P were equal 1.64 and 1.47 for Sr-HA and Sr-TCP coatings, respectively. Thus, it can be assumed that the composition of Sr-HA and Sr-TCP coatings was predominantly presented by (Sr,Mg)-substituted hydroxyapatite and (Sr,Mg)-substituted tricalcium phosphate. However, the average content of Sr was approximately the same for both types of the coatings and was equal to 1.8 at.%. The Sr-HA coatings were less soluble and had higher corrosion resistance than the Sr-TCP coatings. Cytotoxic tests in vitro demonstrated a higher cell viability after cultivation with extracts of the Sr-HA coatings. 
461 |t Materials 
463 |t Vol. 13 iss. 8  |v [1942, 21 p.]  |d 2020 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a Sr-tricalcium phosphate 
610 1 |a Sr-hydroxyapatite 
610 1 |a magnesium alloy 
610 1 |a micro-arc oxidation 
610 1 |a biocoatings 
610 1 |a structure 
610 1 |a corrosion resistance 
610 1 |a cell viability 
610 1 |a гидроксиапатиты 
610 1 |a трикальцийфосфат 
610 1 |a магниевые сплавы 
610 1 |a микродуговое оксидирование 
610 1 |a биопокрытия 
610 1 |a устойчивость 
610 1 |a коррозия 
610 1 |a жизнеспособность 
610 1 |a клетки 
610 1 |a состав 
701 1 |a Sedelnikova  |b M. B.  |g Mariya Borisovna 
701 1 |a Sharkeev  |b Yu. P.  |c physicist  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1950-  |g Yury Petrovich  |3 (RuTPU)RU\TPU\pers\32228  |9 16228 
701 1 |a Tolkacheva  |b T. V.  |g Tatjyana Viktorovna 
701 1 |a Khimich  |b M. A.  |g Margarita Andreevna 
701 1 |a Bakina  |b O. V.  |g Olga Vladimirovna 
701 1 |a Fomenko  |b A. N.  |g Alla Nikolaevna 
701 1 |a Kazakbaeva  |b A. A.  |g Aygerim Azamatovna 
701 1 |a Fadeeva  |b I. V.  |g Inna Vilorovna 
701 1 |a Egorkin  |b V. S.  |g Vladimir Sergeevich 
701 1 |a Gnedenkov  |b S. V.  |g Sergey Vasiljevich 
701 1 |a Schmidt  |b Ju. M.  |g Jurgen 
701 1 |a Loza  |b K.  |g Katerina 
701 1 |a Primak  |b O.  |g Oleg 
701 1 |a Epple  |b M.  |g Matthias 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа физики высокоэнергетических процессов  |c (2017- )  |3 (RuTPU)RU\TPU\col\23551 
801 2 |a RU  |b 63413507  |c 20210824  |g RCR 
856 4 |u https://doi.org/10.3390/ma13081942 
942 |c CF