Smart recycling of PET to sorbents for insecticides through in situ MOF growth
| Parent link: | Applied Materials Today Vol. 22.— 2021.— [100910, 9 р.] |
|---|---|
| Corporate Authors: | , |
| Other Authors: | , , , , , , , , , , |
| Summary: | Title screen The continually growing level of ecotoxicants generates a request for principal new strategies to safeguard the environment. In this contribution, we proposed a comprehensive approach to solving two emerging problems: recycling polyethylene terephthalate wastes (PET) and removing toxic insecticides from water. The developed technology consumed PET bottles as the source and support for the growth of UiO-66 frameworks and were further applied for the removal of imidacloprid from water. The prepared material was characterized by a range of microscopic and spectroscopic techniques confirming the high loading and homogenous distribution of UiO-66 across the PET support. The sorbent (PET@UiO-66) delivered considerable technical advantages beyond the convenient sorbents: sustainable and cheap preparation; high adsorption capacity and rate; stability and recyclability; 100 times enhanced permeability compared to UiO-66 powder; and applicability in fixed-bed columns. We believe that the proposed design and technological relevance will be a basis for the further developing of the smart utilization of wastes for sustainable functional materials. Режим доступа: по договору с организацией-держателем ресурса |
| Published: |
2021
|
| Subjects: | |
| Online Access: | https://doi.org/10.1016/j.apmt.2020.100910 |
| Format: | Electronic Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=665118 |
| Summary: | Title screen The continually growing level of ecotoxicants generates a request for principal new strategies to safeguard the environment. In this contribution, we proposed a comprehensive approach to solving two emerging problems: recycling polyethylene terephthalate wastes (PET) and removing toxic insecticides from water. The developed technology consumed PET bottles as the source and support for the growth of UiO-66 frameworks and were further applied for the removal of imidacloprid from water. The prepared material was characterized by a range of microscopic and spectroscopic techniques confirming the high loading and homogenous distribution of UiO-66 across the PET support. The sorbent (PET@UiO-66) delivered considerable technical advantages beyond the convenient sorbents: sustainable and cheap preparation; high adsorption capacity and rate; stability and recyclability; 100 times enhanced permeability compared to UiO-66 powder; and applicability in fixed-bed columns. We believe that the proposed design and technological relevance will be a basis for the further developing of the smart utilization of wastes for sustainable functional materials. Режим доступа: по договору с организацией-держателем ресурса |
|---|---|
| DOI: | 10.1016/j.apmt.2020.100910 |