Kemeny rule for preference aggregation: Reducing all exact solutions to a single one
| Parent link: | Measurement Vol. 182.— 2021.— [109403, 26 p.] |
|---|---|
| Hlavní autor: | Muravyov (Murav’ev) S. V. Sergey Vasilyevich |
| Korporativní autor: | Национальный исследовательский Томский политехнический университет Инженерная школа информационных технологий и робототехники Отделение автоматизации и робототехники |
| Další autoři: | Emelyanova E. Y. Ekaterina Yurevna |
| Shrnutí: | Title screen Preference aggregation as a single consensus ranking (CR) determination, using Kemeny rule, for an input profile consisting of m rankings, including ties, of n alternatives is used in multidimensional ordinal scale measurements, interval fusion with preference aggregation (IF&PA) technique, and various machine learning applications. In spite of its NP-hardness, the Kemeny rule can be fruitfully applied at the problem size n < 20, using branch and bound method, however, it can lead not to a single, but N optimal (exact) solutions (CRs), which are strict orders of the alternatives and form an output profile (OP). An efficient formal rule based on specific parameters of a weighted tournament matrix, constructed for the OP, is proposed to convolute the OP into an exact single final CR, which can include ties. The convolution rule is validated using Borda count, applied to the OP, and the notion of “betweenness” relation over rankings. Режим доступа: по договору с организацией-держателем ресурса |
| Jazyk: | angličtina |
| Vydáno: |
2021
|
| Témata: | |
| On-line přístup: | https://doi.org/10.1016/j.measurement.2021.109403 |
| Médium: | Elektronický zdroj Kapitola |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=665073 |
Podobné jednotky
Analysis of heteroscedastic measurement data by the self-refining method of interval fusion with preference aggregation – IF&PA
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2021)
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2021)
Method of interval fusion with preference aggregation in brightness thresholds selection for automatic weld surface defects recognition
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2024)
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2024)
Агрегирование предпочтений в интерпретации данных энергетических обследований
Autor: Муравьев С. В. Сергей Васильевич
Vydáno: (2018)
Autor: Муравьев С. В. Сергей Васильевич
Vydáno: (2018)
Precise Measurand Value Estimating by Interval Fusion with Preference Aggregation: Heteroscedasticity Case
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2020)
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2020)
Recognition Ability of Interval Fusion with Preference Aggregation in Weld Defects Images Analysis
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2020)
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2020)
Inertial MEMS Sensors Accuracy Improvement by Interval Fusion with Preference Aggregation
Vydáno: (2020)
Vydáno: (2020)
Interval Data Fusion with Preference Aggregation for Balancing Measurement Accuracy and Energy Consumption in WSN
Autor: Khudonogova L. I. Ludmila Igorevna
Vydáno: (2021)
Autor: Khudonogova L. I. Ludmila Igorevna
Vydáno: (2021)
Adjustment of fundamental physical constant values using the interval fusion with preference aggregation
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2020)
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2020)
Automatic Segmentation by the Method of Interval Fusion with Preference Aggregation When Recognizing Weld Defects
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2023)
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2023)
Weld Defects Automatic Visual Recognition by Combined Application of Canny Edge Detector and Interval Fusion with Preference Aggregation
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2022)
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2022)
About reasonable number of rankings in preference profile when measuring quality
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2007)
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2007)
Rankings as ordinal scale measurement results
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2007)
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2007)
A consensus ranking based proposal for combining data in adjustment of the fundamental physical constant values
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2019)
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2019)
Метод агрегирования предпочтений при определении пороговых значений яркости для распознавания объектов на оптических изображениях
Autor: Нгуен Д. К. Дык Кыонг
Vydáno: (2024)
Autor: Нгуен Д. К. Дык Кыонг
Vydáno: (2024)
Агрегирование предпочтений при выборе цветовой модели для цифрового цветометрического анализа состава веществ
Autor: Муравьев С. В. Сергей Васильевич
Vydáno: (2020)
Autor: Муравьев С. В. Сергей Васильевич
Vydáno: (2020)
Robust Determination of Performance Loss Rate for Photovoltaic Systems
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2024)
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2024)
Робастный выбор пороговых значений яркости для методов автоматического распознавания дефектов сварного шва диссертация на соискание учёной степени кандидата технических наук спец. 2.3.1
Autor: Нгуен Дык Кыонг
Vydáno: (Томск, 2024)
Autor: Нгуен Дык Кыонг
Vydáno: (Томск, 2024)
Робастный выбор пороговых значений яркости для методов автоматического распознавания дефектов сварного шва автореферат диссертации на соискание учёной степени кандидата технических наук спец. 2.3.1
Autor: Нгуен Дык Кыонг
Vydáno: (Томск, 2024)
Autor: Нгуен Дык Кыонг
Vydáno: (Томск, 2024)
Thermography data fusion and nonnegative matrix factorization for the evaluation of cultural heritage objects and buildings
Vydáno: (2019)
Vydáno: (2019)
Robust computational approach to determine the safe mud weight window using well-log data from a large gas reservoir
Vydáno: (2022)
Vydáno: (2022)
Unwritten rules of HR management in Russia
Autor: Stepanova N. A.
Vydáno: (2013)
Autor: Stepanova N. A.
Vydáno: (2013)
Cybersport in educational practices
Autor: Чешуин Д. С.
Vydáno: (2020)
Autor: Чешуин Д. С.
Vydáno: (2020)
Aggregation of manufactured nanoparticles in aqueous solutions of mono- and bivalent electrolytes
Vydáno: (2015)
Vydáno: (2015)
One-Dimensional Fokker–Planck Equation with Quadratically Nonlinear Quasilocal Drift
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (2018)
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (2018)
Surface Acid-Base Characteristics and their Contribution to Aggregative Stability of Nanoparticles
Vydáno: (2014)
Vydáno: (2014)
Interval data fusion with preference aggregation
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2018)
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2018)
Multiple solutions of an exact algorithm for determination of all Kemeny rankings: preliminary experimental results
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2011)
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2011)
Ordinal measurement, preference aggregation and interlaboratory comparisons
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2013)
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2013)
Разработка программного продукта для подсчета клеточных структур гистологических снимков роговицы
Autor: Ковалев Е. О.
Vydáno: (2025)
Autor: Ковалев Е. О.
Vydáno: (2025)
Visual Representations of the Russian Monarchy in G.A. Stroganov’s Graphic Collections
Vydáno: (2020)
Vydáno: (2020)
Mathematical and Software for Building the Rating of the Largest IaaS Suppliers by the Threshold Aggregation Method
Autor: Razumnikov S. V. Sergey Viktorovich
Vydáno: (2023)
Autor: Razumnikov S. V. Sergey Viktorovich
Vydáno: (2023)
Preference Profile Decomposition When Processing Energy Audit Data by Preference Aggregation Method
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2019)
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2019)
Building an Aggregate Rating of Popular SaaS Services Based on Organization of Customer Support Channels
Autor: Razumnikov S. V. Sergey Viktorovich
Vydáno: (2022)
Autor: Razumnikov S. V. Sergey Viktorovich
Vydáno: (2022)
Behavior of ZnO nanoparticles in glycine solution: pH and size effect on aggregation and adsorption
Vydáno: (2020)
Vydáno: (2020)
Processing Data from Interlaboratory Comparisons by the Method of Preference Aggregation
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2016)
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2016)
Preference aggregation as a way to solve problems in metrology and instrumentation
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2014)
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2014)
Largest consistent subsets in interlaboratory comparisons: preference aggregation approach
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2011)
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2011)
Dimension reduction of preference profile for aggregation of energy audit data
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2021)
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2021)
Analytical method of calculating of open pit slopes stability on a weak base of unlimited thickness
Autor: Dolgonosov V.
Vydáno: (2014)
Autor: Dolgonosov V.
Vydáno: (2014)
Business game as instrument of staff recruitment
Autor: Zhuravleva A. V.
Vydáno: (2014)
Autor: Zhuravleva A. V.
Vydáno: (2014)
Podobné jednotky
-
Analysis of heteroscedastic measurement data by the self-refining method of interval fusion with preference aggregation – IF&PA
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2021) -
Method of interval fusion with preference aggregation in brightness thresholds selection for automatic weld surface defects recognition
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2024) -
Агрегирование предпочтений в интерпретации данных энергетических обследований
Autor: Муравьев С. В. Сергей Васильевич
Vydáno: (2018) -
Precise Measurand Value Estimating by Interval Fusion with Preference Aggregation: Heteroscedasticity Case
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2020) -
Recognition Ability of Interval Fusion with Preference Aggregation in Weld Defects Images Analysis
Autor: Muravyov (Murav’ev) S. V. Sergey Vasilyevich
Vydáno: (2020)