ANN Assisted-IoT Enabled COVID-19 Patient Monitoring

Bibliographic Details
Parent link:IEEE Access
Vol. 9.— 2021.— [P. 42483-42492]
Corporate Author: Национальный исследовательский Томский политехнический университет Инженерная школа информационных технологий и робототехники Научно-образовательный центр "Автоматизация и информационные технологии"
Other Authors: Ratkhor G. Gitandzhali, Garg S. Sakhil, Kaddum Zh. Zhorzh, Vu Yuley, Dzhayakodi (Jayakody) Arachshiladzh D. N. K. Dushanta Nalin Kumara, Alamri A. M. Atif M
Summary:Title screen
COVID-19 is an extremely dangerous disease because of its highly infectious nature. In order to provide a quick and immediate identification of infection, a proper and immediate clinical support is needed. Researchers have proposed various Machine Learning and smart IoT based schemes for categorizing the COVID-19 patients. Artificial Neural Networks (ANN) that are inspired by the biological concept of neurons are generally used in various applications including healthcare systems. The ANN scheme provides a viable solution in the decision making process for managing the healthcare information. This manuscript endeavours to illustrate the applicability and suitability of ANN by categorizing the status of COVID-19 patients’ health into infected (IN), uninfected (UI), exposed (EP) and susceptible (ST). In order to do so, Bayesian and back propagation algorithms have been used to generate the results. Further, viterbi algorithm is used to improve the accuracy of the proposed system. The proposed mechanism is validated over various accuracy and classification parameters against conventional Random Tree (RT), Fuzzy C Means (FCM) and REPTree (RPT) methods.
Language:English
Published: 2021
Subjects:
Online Access:http://earchive.tpu.ru/handle/11683/72785
https://doi.org/10.1109/ACCESS.2021.3064826
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=664985

MARC

LEADER 00000naa0a2200000 4500
001 664985
005 20250124153950.0
035 |a (RuTPU)RU\TPU\network\36170 
035 |a RU\TPU\network\36160 
090 |a 664985 
100 |a 20210609d2021 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a ANN Assisted-IoT Enabled COVID-19 Patient Monitoring  |f G. Ratkhor, S. Garg, Zh. Kaddum [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 42 tit.] 
330 |a COVID-19 is an extremely dangerous disease because of its highly infectious nature. In order to provide a quick and immediate identification of infection, a proper and immediate clinical support is needed. Researchers have proposed various Machine Learning and smart IoT based schemes for categorizing the COVID-19 patients. Artificial Neural Networks (ANN) that are inspired by the biological concept of neurons are generally used in various applications including healthcare systems. The ANN scheme provides a viable solution in the decision making process for managing the healthcare information. This manuscript endeavours to illustrate the applicability and suitability of ANN by categorizing the status of COVID-19 patients’ health into infected (IN), uninfected (UI), exposed (EP) and susceptible (ST). In order to do so, Bayesian and back propagation algorithms have been used to generate the results. Further, viterbi algorithm is used to improve the accuracy of the proposed system. The proposed mechanism is validated over various accuracy and classification parameters against conventional Random Tree (RT), Fuzzy C Means (FCM) and REPTree (RPT) methods. 
461 |t IEEE Access 
463 |t Vol. 9  |v [P. 42483-42492]  |d 2021 
610 1 |a труды учёных ТПУ 
610 1 |a электронный ресурс 
610 1 |a COVID-19 
610 1 |a medical services 
610 1 |a artificial intelligence 
610 1 |a viruses (medical) 
610 1 |a diseases 
610 1 |a pandemics 
610 1 |a viterbi algorithm 
610 1 |a медицинские услуги 
610 1 |a искусственный интеллект 
610 1 |a вирусы 
610 1 |a болезни 
610 1 |a пандемии 
701 1 |a Ratkhor  |b G.  |g Gitandzhali 
701 1 |a Garg  |b S.  |g Sakhil 
701 1 |a Kaddum  |b Zh.  |g Zhorzh 
701 0 |a Vu Yuley 
701 1 |a Dzhayakodi (Jayakody) Arachshiladzh  |b D. N. K.  |c specialist in the field of electronics  |c Professor of Tomsk Polytechnic University  |f 1983-  |g Dushanta Nalin Kumara  |3 (RuTPU)RU\TPU\pers\37962  |9 20606 
701 1 |a Alamri  |b A. M.  |g Atif M 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа информационных технологий и робототехники  |b Научно-образовательный центр "Автоматизация и информационные технологии"  |3 (RuTPU)RU\TPU\col\27515 
801 2 |a RU  |b 63413507  |c 20220819  |g RCR 
856 4 0 |u http://earchive.tpu.ru/handle/11683/72785 
856 4 0 |u https://doi.org/10.1109/ACCESS.2021.3064826 
942 |c CF