Metallurgy of a Ti–Au alloy synthesized by controlled electric resistance fusion

Detalhes bibliográficos
Parent link:Intermetallics
Vol. 127.— 2020.— [106968, 15 p.]
Corporate Authors: Национальный исследовательский Томский политехнический университет Инженерная школа новых производственных технологий Отделение материаловедения, Национальный исследовательский Томский политехнический университет Инженерная школа неразрушающего контроля и безопасности Отделение электронной инженерии
Outros Autores: Klimenov V. A. Vasily Aleksandrovich, Slobodyan M. S. Mikhail Stepanovich, Ivanov Yu. F. Yuriy Fedorovich, Kiselev A. S. Aleksey Sergeevich, Matrenin S. V. Sergey Veniaminovich
Resumo:Title screen
In this study, the first attempt was made to synthesize a Ti–Au alloy by fusing two titanium plates and a thin gold foil between them using the small-scale resistance spot welding procedure. The main goal was to study the possibility of controlling the alloy synthesis process by predefined thermal cycles (metal heating and its cooling rate). The Ti–Au alloy microstructure, chemical and phase compositions, as well as hardness distributions were studied by scanning and transmission electron microscopy, energy dispersive X-ray analysis, and nanoindentation. As a result, a weld nugget with optimal sizes for titanium alloys was formed. The average gold content in the synthesized Ti–Au alloy was about 16 at. % (42 wt %). It was distributed rather evenly throughout the nugget volume in ratios of 10–20 at. % (30–50 wt %). In addition to ?-Ti and Au particles, the alloy included the Ti3Au and TiAu2 compounds corresponding to the gold content of 25 and 67 at. %, respectively. These compounds had formed in microvolumes contained high gold concentrations for a period of less than 3 ms. Hardness values were from 6 up to 7 GPa in the regions most enriched in gold, and they were about 4 GPa where the gold content was minimal. Based on the obtained results, some ways were proposed for the possible optimization of this research method.
Режим доступа: по договору с организацией-держателем ресурса
Idioma:inglês
Publicado em: 2020
Assuntos:
Acesso em linha:https://doi.org/10.1016/j.intermet.2020.106968
Formato: Recurso Electrónico Capítulo de Livro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=664628

MARC

LEADER 00000naa0a2200000 4500
001 664628
005 20250409105405.0
035 |a (RuTPU)RU\TPU\network\35812 
035 |a RU\TPU\network\28612 
090 |a 664628 
100 |a 20210511d2020 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Metallurgy of a Ti–Au alloy synthesized by controlled electric resistance fusion  |f V. A. Klimenov, M. S. Slobodyan, Yu. F. Ivanov [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 40 tit.] 
330 |a In this study, the first attempt was made to synthesize a Ti–Au alloy by fusing two titanium plates and a thin gold foil between them using the small-scale resistance spot welding procedure. The main goal was to study the possibility of controlling the alloy synthesis process by predefined thermal cycles (metal heating and its cooling rate). The Ti–Au alloy microstructure, chemical and phase compositions, as well as hardness distributions were studied by scanning and transmission electron microscopy, energy dispersive X-ray analysis, and nanoindentation. As a result, a weld nugget with optimal sizes for titanium alloys was formed. The average gold content in the synthesized Ti–Au alloy was about 16 at. % (42 wt %). It was distributed rather evenly throughout the nugget volume in ratios of 10–20 at. % (30–50 wt %). In addition to ?-Ti and Au particles, the alloy included the Ti3Au and TiAu2 compounds corresponding to the gold content of 25 and 67 at. %, respectively. These compounds had formed in microvolumes contained high gold concentrations for a period of less than 3 ms. Hardness values were from 6 up to 7 GPa in the regions most enriched in gold, and they were about 4 GPa where the gold content was minimal. Based on the obtained results, some ways were proposed for the possible optimization of this research method. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Intermetallics 
463 |t Vol. 127  |v [106968, 15 p.]  |d 2020 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a biomedical alloys 
610 1 |a alloy design 
610 1 |a welding 
610 1 |a microstructure 
610 1 |a electron microscopy 
610 1 |a scanning electron microscopy 
610 1 |a transmission 
610 1 |a biomedical 
701 1 |a Klimenov  |b V. A.  |c specialist in the field of non-destructive testing  |c Professor of Tomsk Polytechnic University, Doctor of technical sciences  |f 1951-  |g Vasily Aleksandrovich  |3 (RuTPU)RU\TPU\pers\32229  |9 16229 
701 1 |a Slobodyan  |b M. S.  |c Specialist in the field of management, specialist in the field of welding production  |c Associate Professor of Tomsk Polytechnic University, Candidate of technical sciences  |f 1978-  |g Mikhail Stepanovich  |3 (RuTPU)RU\TPU\pers\43098  |9 21616 
701 1 |a Ivanov  |b Yu. F.  |c physicist  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1955-  |g Yuriy Fedorovich  |3 (RuTPU)RU\TPU\pers\33559  |9 17226 
701 1 |a Kiselev  |b A. S.  |c Specialist in the field of welding production  |c Head of the department of Tomsk Polytechnic University, Candidate of technical sciences  |f 1955-  |g Aleksey Sergeevich  |3 (RuTPU)RU\TPU\pers\34654  |9 18016 
701 1 |a Matrenin  |b S. V.  |c specialist in the field of material science  |c Associate Professor of Tomsk Polytechnic University, Candidate of technical sciences  |f 1964-  |g Sergey Veniaminovich  |3 (RuTPU)RU\TPU\pers\34634  |9 17996 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа новых производственных технологий  |b Отделение материаловедения  |3 (RuTPU)RU\TPU\col\23508 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа неразрушающего контроля и безопасности  |b Отделение электронной инженерии  |3 (RuTPU)RU\TPU\col\23507 
801 2 |a RU  |b 63413507  |c 20210511  |g RCR 
856 4 |u https://doi.org/10.1016/j.intermet.2020.106968 
942 |c CF