Zn-, Cu- or Ag-incorporated micro-arc coatings on titanium alloys: Properties and behavior in synthetic biological media

Dades bibliogràfiques
Parent link:Surface and Coatings Technology
Vol. 369.— 2019.— [P. 52-68]
Autor corporatiu: Национальный исследовательский Томский политехнический университет Инженерная школа ядерных технологий Научно-образовательный центр Б. П. Вейнберга, Национальный исследовательский Томский политехнический университет Исследовательская школа физики высокоэнергетических процессов
Altres autors: Sedelnikova M. B. Mariya Borisovna, Komarova E. G. Ekaterina Gennadjevna, Sharkeev Yu. P. Yury Petrovich, Ugodchikova A. V. Anna Vladimirovna, Mushtovatova L. S. Lyudmila, Karpova M. R. Mariya Rostislavovna, Sheikin V. V. Vladimir, Litvinova L. S., Khlusov I. A. Igor Albertovich
Sumari:Title screen
Zn-, Cu- or Ag-incorporated calcium phosphate coatings were deposited on pure titanium and Ti-40?wt% Nb substrates by the micro-arc oxidation method. Microstructure, morphology, phase composition, physico-chemical and antibacterial properties of the formed coatings and their behavior in synthetic biological media have been studied. Due to the different compositions of the electrolytes and different substrates the MAO process took place at various electro-physical parameters such as current densities and voltages. As a result, the coatings had different properties, phase composition and were characterized by a different behavior in synthetic biological fluids. When using the acidic electrolyte, the applied voltage varied in the range of 200–300?V. In the case of an alkaline electrolyte, the voltage range was 350–450?V. The current density of the MAO process in acidic electrolyte was ten times higher than that in alkaline electrolyte. Therefore, the thickness, roughness and porosity of the Zn-, Cu-incorporated calcium phosphate coatings deposited in acidic electrolyte were the highest. The Zn-, Cu-incorporated coatings showed weight gain in the biological fluids due to intensive dissolution and consequent sedimentation of the calcium phosphates on the coating surface. Ag-incorporated coatings dissolved slowly in the biological fluid. The calcium phosphate coatings containing trace elements Zn, Cu or Ag demonstrated antimicrobial activity against Staphylococcus aureus 209P and in general, did not show cytotoxic effect on myelocariocytes.
Режим доступа: по договору с организацией-держателем ресурса
Idioma:anglès
Publicat: 2019
Matèries:
Accés en línia:https://doi.org/10.1016/j.surfcoat.2019.04.021
Format: Electrònic Capítol de llibre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=664516

MARC

LEADER 00000naa0a2200000 4500
001 664516
005 20250411131445.0
035 |a (RuTPU)RU\TPU\network\35700 
090 |a 664516 
100 |a 20210416d2019 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Zn-, Cu- or Ag-incorporated micro-arc coatings on titanium alloys: Properties and behavior in synthetic biological media  |f M. B. Sedelnikova, E. G. Komarova, Yu. P. Sharkeev [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 59 tit.] 
330 |a Zn-, Cu- or Ag-incorporated calcium phosphate coatings were deposited on pure titanium and Ti-40?wt% Nb substrates by the micro-arc oxidation method. Microstructure, morphology, phase composition, physico-chemical and antibacterial properties of the formed coatings and their behavior in synthetic biological media have been studied. Due to the different compositions of the electrolytes and different substrates the MAO process took place at various electro-physical parameters such as current densities and voltages. As a result, the coatings had different properties, phase composition and were characterized by a different behavior in synthetic biological fluids. When using the acidic electrolyte, the applied voltage varied in the range of 200–300?V. In the case of an alkaline electrolyte, the voltage range was 350–450?V. The current density of the MAO process in acidic electrolyte was ten times higher than that in alkaline electrolyte. Therefore, the thickness, roughness and porosity of the Zn-, Cu-incorporated calcium phosphate coatings deposited in acidic electrolyte were the highest. The Zn-, Cu-incorporated coatings showed weight gain in the biological fluids due to intensive dissolution and consequent sedimentation of the calcium phosphates on the coating surface. Ag-incorporated coatings dissolved slowly in the biological fluid. The calcium phosphate coatings containing trace elements Zn, Cu or Ag demonstrated antimicrobial activity against Staphylococcus aureus 209P and in general, did not show cytotoxic effect on myelocariocytes. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Surface and Coatings Technology 
463 |t Vol. 369  |v [P. 52-68]  |d 2019 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a micro-arc oxidation 
610 1 |a calcium phosphate coatings 
610 1 |a microelements 
610 1 |a synthetic biological media 
610 1 |a antibacterial activity 
610 1 |a окисление 
610 1 |a микроэлементы 
610 1 |a биологические среды 
701 1 |a Sedelnikova  |b M. B.  |c Chemical Engineer  |c Professor of Tomsk Polytechnic University, Doctor of technical sciences  |f 1967-  |g Mariya Borisovna  |3 (RuTPU)RU\TPU\pers\31922  |9 15992 
701 1 |a Komarova  |b E. G.  |g Ekaterina Gennadjevna 
701 1 |a Sharkeev  |b Yu. P.  |c physicist  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1950-  |g Yury Petrovich  |3 (RuTPU)RU\TPU\pers\32228  |9 16228 
701 1 |a Ugodchikova  |b A. V.  |g Anna Vladimirovna 
701 1 |a Mushtovatova  |b L. S.  |g Lyudmila 
701 1 |a Karpova  |b M. R.  |g Mariya Rostislavovna 
701 1 |a Sheikin  |b V. V.  |g Vladimir 
701 1 |a Litvinova  |b L. S. 
701 1 |a Khlusov  |b I. A.  |c biophysicist  |c Professor of Tomsk Polytechnic University, doctor of medical Sciences  |f 1963-  |g Igor Albertovich  |3 (RuTPU)RU\TPU\pers\34907  |9 18225 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа ядерных технологий  |b Научно-образовательный центр Б. П. Вейнберга  |3 (RuTPU)RU\TPU\col\23561 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа физики высокоэнергетических процессов  |c (2017- )  |3 (RuTPU)RU\TPU\col\23551 
801 2 |a RU  |b 63413507  |c 20210416  |g RCR 
856 4 |u https://doi.org/10.1016/j.surfcoat.2019.04.021 
942 |c CF