Enhanced properties of poly(ε‐caprolactone)/polyvinylpyrrolidone electrospun scaffolds fabricated using 1,1,1,3,3,3‐hexafluoro‐2‐propanol

Detalhes bibliográficos
Parent link:Journal of Applied Polymer Science
Vol. 138, iss. 23.— 2021.— [app50535, 11 p.]
Autores corporativos: Национальный исследовательский Томский политехнический университет Инженерная школа ядерных технологий Научно-образовательный центр Б. П. Вейнберга, Национальный исследовательский Томский политехнический университет Инженерная школа новых производственных технологий Научно-образовательный центр Н. М. Кижнера
Outros Autores: Goreninsky (Goreninskii) S. I. Semen Igorevich, Danilenko N. V. Nadezhda Viktorovna, Bolbasov E. N. Evgeny Nikolaevich, Evtina A. A. Anastasiya Alekseevna, Buldakov A. A. Mikhail Aleksandrovich, Cherdyntseva N. V. Nadezhda Viktorovna, Sakib M. Mukhkhamad, Beshchasna N. Natalia, Opitz J. Jorg, Filimonov V. D. Viktor Dmitrievich, Tverdokhlebov S. I. Sergei Ivanovich
Resumo:Title screen
Poly(ε‐caprolactone)/polyvinylpyrrolidone (PCL/PVP) scaffolds with various composition were fabricated from 1,1,1,3,3,3‐hexafluoro‐2‐propanol (HFIP) solution using the same electrospinning parameters in order to reveal the effect of polymer ratio on the material properties. The obtained materials were characterized using scanning electron microscopy, contact angle measurements, X‐ray diffraction, Fourier‐transformed infrared spectroscopy, and tensile testing. The strengthening effect of PVP was observed: Young modulus of PCL/PVP scaffold with 50/50 polymer ratio was found at 105.4 ± 8.4 MPa which is six times higher comparing to those of PCL scaffold. PVP‐containing scaffolds were extremely hydrophilic with PVP concentration of 5 wt% (vs. 25 wt% in previous reports) leading to full wetting of the material. in vitro studies showed an improved viability of HeLa cells cultured with the composites containing higher concentrations of PVP. Owing to the application of HFIP, PCL‐based materials were loaded with cyclophosphamide for the first time and the PVP‐containing materials demonstrated the intensified initial release of the model compound. Utilizing HFIP for the fabrication of PCL/PVP scaffolds significantly widens their application for drug delivery systems due to a good solubility of proteins, drugs, and other biologically active compounds in this solvent.
Режим доступа: по договору с организацией-держателем ресурса
Idioma:inglês
Publicado em: 2021
Assuntos:
Acesso em linha:https://doi.org/10.1002/app.50535
Formato: Recurso Eletrônico Capítulo de Livro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=664465

MARC

LEADER 00000naa0a2200000 4500
001 664465
005 20250415133331.0
035 |a (RuTPU)RU\TPU\network\35649 
035 |a RU\TPU\network\35014 
090 |a 664465 
100 |a 20210414d2021 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Enhanced properties of poly(ε‐caprolactone)/polyvinylpyrrolidone electrospun scaffolds fabricated using 1,1,1,3,3,3‐hexafluoro‐2‐propanol  |f S. I. Goreninsky (Goreninskii), N. V. Danilenko, E. N. Bolbasov [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 40 tit.] 
330 |a Poly(ε‐caprolactone)/polyvinylpyrrolidone (PCL/PVP) scaffolds with various composition were fabricated from 1,1,1,3,3,3‐hexafluoro‐2‐propanol (HFIP) solution using the same electrospinning parameters in order to reveal the effect of polymer ratio on the material properties. The obtained materials were characterized using scanning electron microscopy, contact angle measurements, X‐ray diffraction, Fourier‐transformed infrared spectroscopy, and tensile testing. The strengthening effect of PVP was observed: Young modulus of PCL/PVP scaffold with 50/50 polymer ratio was found at 105.4 ± 8.4 MPa which is six times higher comparing to those of PCL scaffold. PVP‐containing scaffolds were extremely hydrophilic with PVP concentration of 5 wt% (vs. 25 wt% in previous reports) leading to full wetting of the material. in vitro studies showed an improved viability of HeLa cells cultured with the composites containing higher concentrations of PVP. Owing to the application of HFIP, PCL‐based materials were loaded with cyclophosphamide for the first time and the PVP‐containing materials demonstrated the intensified initial release of the model compound. Utilizing HFIP for the fabrication of PCL/PVP scaffolds significantly widens their application for drug delivery systems due to a good solubility of proteins, drugs, and other biologically active compounds in this solvent. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Journal of Applied Polymer Science 
463 |t Vol. 138, iss. 23  |v [app50535, 11 p.]  |d 2021 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a biodegradable polymers 
610 1 |a controllable release 
610 1 |a drug delivery 
610 1 |a electrospinning 
610 1 |a биоразлагаемые полимеры 
610 1 |a электроспиннинг 
701 1 |a Goreninsky (Goreninskii)  |b S. I.  |c chemist  |c engineer of Tomsk Polytechnic University  |f 1993-  |g Semen Igorevich  |3 (RuTPU)RU\TPU\pers\40080  |9 21234 
701 1 |a Danilenko  |b N. V.  |c chemical engineer  |c Research Engineer, Tomsk Polytechnic University  |f 1992-  |g Nadezhda Viktorovna  |3 (RuTPU)RU\TPU\pers\37547  |9 20416 
701 1 |a Bolbasov  |b E. N.  |c physicist  |c Senior Researcher at Tomsk Polytechnic University, Candidate of Technical Sciences  |f 1981-  |g Evgeny Nikolaevich  |3 (RuTPU)RU\TPU\pers\30857  |9 15103 
701 1 |a Evtina  |b A. A.  |g Anastasiya Alekseevna 
701 1 |a Buldakov  |b A. A.  |g Mikhail Aleksandrovich 
701 1 |a Cherdyntseva  |b N. V.  |g Nadezhda Viktorovna 
701 1 |a Sakib  |b M.  |g Mukhkhamad 
701 1 |a Beshchasna  |b N.  |g Natalia 
701 1 |a Opitz  |b J.  |g Jorg 
701 1 |a Filimonov  |b V. D.  |c Russian chemist  |c Professor of the TPU  |f 1945-  |g Viktor Dmitrievich  |3 (RuTPU)RU\TPU\pers\26423  |9 12127 
701 1 |a Tverdokhlebov  |b S. I.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical science  |f 1961-  |g Sergei Ivanovich  |3 (RuTPU)RU\TPU\pers\30855  |9 15101 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа ядерных технологий  |b Научно-образовательный центр Б. П. Вейнберга  |3 (RuTPU)RU\TPU\col\23561 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа новых производственных технологий  |b Научно-образовательный центр Н. М. Кижнера  |3 (RuTPU)RU\TPU\col\23556 
801 2 |a RU  |b 63413507  |c 20210414  |g RCR 
850 |a 63413507 
856 4 |u https://doi.org/10.1002/app.50535 
942 |c CF