Evidence for a spin acoustic surface plasmon from inelastic atom scattering

Библиографические подробности
Источник:Scientific Reports
Vol. 11, iss. 1.— 2021.— [1506, 12 p.]
Автор-организация: Национальный исследовательский Томский политехнический университет Инженерная школа ядерных технологий Отделение экспериментальной физики
Другие авторы: Benedek G. Giorgio, Bernasconi M., Campi D. Davide, Silkin I. V. Igor Vyacheslavovich, Chernov I. P. Ivan Petrovich, Silkin V. M. Vyacheslav Mikhaylovich, Chulkov E. V. Evgeny Vladimirovich, Echenique P. M. Pablo, Toennies J. P., Anemone G. Gloria, Al T. A. Taleb Amjad, Miranda R. P. Rafael, Farias D. L. Daniel
Примечания:Title screen
Closed-shell atoms scattered from a metal surface exchange energy and momentum with surface phonons mostly via the interposed surface valence electrons, i.e., via the creation of virtual electron-hole pairs. The latter can then decay into surface phonons via electron-phonon interaction, as well as into acoustic surface plasmons (ASPs). While the first channel is the basis of the current inelastic atom scattering (IAS) surface-phonon spectroscopy, no attempt to observe ASPs with IAS has been made so far. In this study we provide evidence of ASP in Ni(111) with both Ne atom scattering and He atom scattering. While the former measurements confirm and extend so far unexplained data, the latter illustrate the coupling of ASP with phonons inside the surface-projected phonon continuum, leading to a substantial reduction of the ASP velocity and possibly to avoided crossing with the optical surface phonon branches. The analysis is substantiated by a self-consistent calculation of the surface response function to atom collisions and of the first-principle surface-phonon dynamics of Ni(111). It is shown that in Ni(111) ASP originate from the majority-spin Shockley surface state and are therefore collective oscillation of surface electrons with the same spin, i.e. it represents a new kind of collective quasiparticle: a Spin Acoustic Surface Plasmon (SASP).
Язык:английский
Опубликовано: 2021
Предметы:
Online-ссылка:https://doi.org/10.1038/s41598-021-81018-9
Формат: Электронный ресурс Статья
Запись в KOHA:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=664410

MARC

LEADER 00000naa0a2200000 4500
001 664410
005 20250416092015.0
035 |a (RuTPU)RU\TPU\network\35594 
035 |a RU\TPU\network\35410 
090 |a 664410 
100 |a 20210413d2021 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Evidence for a spin acoustic surface plasmon from inelastic atom scattering  |f G. Benedek, M. Bernasconi, D. Campi [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 84 tit.] 
330 |a Closed-shell atoms scattered from a metal surface exchange energy and momentum with surface phonons mostly via the interposed surface valence electrons, i.e., via the creation of virtual electron-hole pairs. The latter can then decay into surface phonons via electron-phonon interaction, as well as into acoustic surface plasmons (ASPs). While the first channel is the basis of the current inelastic atom scattering (IAS) surface-phonon spectroscopy, no attempt to observe ASPs with IAS has been made so far. In this study we provide evidence of ASP in Ni(111) with both Ne atom scattering and He atom scattering. While the former measurements confirm and extend so far unexplained data, the latter illustrate the coupling of ASP with phonons inside the surface-projected phonon continuum, leading to a substantial reduction of the ASP velocity and possibly to avoided crossing with the optical surface phonon branches. The analysis is substantiated by a self-consistent calculation of the surface response function to atom collisions and of the first-principle surface-phonon dynamics of Ni(111). It is shown that in Ni(111) ASP originate from the majority-spin Shockley surface state and are therefore collective oscillation of surface electrons with the same spin, i.e. it represents a new kind of collective quasiparticle: a Spin Acoustic Surface Plasmon (SASP). 
461 |t Scientific Reports 
463 |t Vol. 11, iss. 1  |v [1506, 12 p.]  |d 2021 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a condensed-matter physics 
610 1 |a electronic properties and materials 
610 1 |a physics 
610 1 |a конденсированные состояния 
610 1 |a электронные свойства 
610 1 |a электронные материалы 
701 1 |a Benedek  |b G.  |g Giorgio 
701 1 |a Bernasconi  |b M. 
701 1 |a Campi  |b D.  |g Davide 
701 1 |a Silkin  |b I. V.  |g Igor Vyacheslavovich 
701 1 |a Chernov  |b I. P.  |c Doctor of Physical and Mathematical Sciences (DSc), Professor of the Department of General Physics of Tomsk Polytechnic University (TPU)  |f 1935-  |g Ivan Petrovich  |3 (RuTPU)RU\TPU\pers\30202  |9 14596 
701 1 |a Silkin  |b V. M.  |g Vyacheslav Mikhaylovich 
701 1 |a Chulkov  |b E. V.  |g Evgeny Vladimirovich 
701 1 |a Echenique  |b P. M.  |g Pablo 
701 1 |a Toennies  |b J. P. 
701 1 |a Anemone  |b G.  |g Gloria 
701 1 |a Al  |b T. A.  |g Taleb Amjad 
701 1 |a Miranda  |b R. P.  |g Rafael 
701 1 |a Farias  |b D. L.  |g Daniel 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа ядерных технологий  |b Отделение экспериментальной физики  |3 (RuTPU)RU\TPU\col\23549 
801 2 |a RU  |b 63413507  |c 20210413  |g RCR 
850 |a 63413507 
856 4 |u https://doi.org/10.1038/s41598-021-81018-9 
942 |c CF