Effect of the Beam Current during the Electron-Beam Melting of Titanium Alloy Ti-6Al-4V on the Structural Features and Phase Transitions in Gas-Phase Hydrogenation

書目詳細資料
Parent link:Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques
Vol. 13, No. 3.— 2019.— [P. 429-433]
Corporate Authors: Национальный исследовательский Томский политехнический университет Инженерная школа ядерных технологий Отделение экспериментальной физики, Национальный исследовательский Томский политехнический университет Институт неразрушающего контроля Международная научно-образовательная лаборатория неразрушающего контроля
其他作者: Pushilina N. S. Natalia Sergeevna, Kudiyarov V. N. Victor Nikolaevich, Syrtanov M. S. Maksim Sergeevich, Kashkarov E. B. Egor Borisovich
總結:Title screen
The structure of the titanium alloy Ti-6Al-4V manufactured by electron-beam melting is shown to be represented by initial [beta]-phase grains more than 40 [mu]m in size; the internal volume of the grains is filled with [alpha]-phase precipitates in the form of plates. The average size of the [alpha] plates is 1.6, 2, and 5 [mu]m at beam currents of 2, 2.5, and 3 mA, respectively. In situ X-ray diffractometry using synchrotron radiation shows that the phase transitions in the titanium alloy are divided into three main stages during hydrogenation to a concentration of 0.6 wt % at a temperature of 650°C and a pressure of 1 atm. An increase in the beam current from 2 to 3 mA does not significantly affect the phase composition of the alloy. During hydrogenation, the growth rate of the volume concentration of the [beta] phase is lower at a higher beam current. This indicates a decrease in the rate of hydrogen absorption with increasing beam current, which is associated with an increase in the size of [alpha] plates.
Режим доступа: по договору с организацией-держателем ресурса
出版: 2019
主題:
在線閱讀:https://doi.org/10.1134/S1027451019030170
格式: 電子 Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=664366

MARC

LEADER 00000naa0a2200000 4500
001 664366
005 20251122071715.0
035 |a (RuTPU)RU\TPU\network\35550 
035 |a RU\TPU\network\29402 
090 |a 664366 
100 |a 20210412d2019 k||y0rusy50 ba 
101 0 |a eng 
135 |a drgn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Effect of the Beam Current during the Electron-Beam Melting of Titanium Alloy Ti-6Al-4V on the Structural Features and Phase Transitions in Gas-Phase Hydrogenation  |f N. S. Pushilina, V. N. Kudiyarov, M. S. Syrtanov, E. B. Kashkarov 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 22 tit.] 
330 |a The structure of the titanium alloy Ti-6Al-4V manufactured by electron-beam melting is shown to be represented by initial [beta]-phase grains more than 40 [mu]m in size; the internal volume of the grains is filled with [alpha]-phase precipitates in the form of plates. The average size of the [alpha] plates is 1.6, 2, and 5 [mu]m at beam currents of 2, 2.5, and 3 mA, respectively. In situ X-ray diffractometry using synchrotron radiation shows that the phase transitions in the titanium alloy are divided into three main stages during hydrogenation to a concentration of 0.6 wt % at a temperature of 650°C and a pressure of 1 atm. An increase in the beam current from 2 to 3 mA does not significantly affect the phase composition of the alloy. During hydrogenation, the growth rate of the volume concentration of the [beta] phase is lower at a higher beam current. This indicates a decrease in the rate of hydrogen absorption with increasing beam current, which is associated with an increase in the size of [alpha] plates. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques 
463 |t Vol. 13, No. 3  |v [P. 429-433]  |d 2019 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a titanium alloy Ti–6Al–4V 
610 1 |a electron-beam melting 
610 1 |a current beam 
610 1 |a structure 
610 1 |a phase transitions 
610 1 |a hydrogenation 
610 1 |a synchrotron radiation 
610 1 |a титановые сплавы 
610 1 |a электронно-лучевая плавка 
610 1 |a фазовые переходы 
610 1 |a гидрирование 
610 1 |a синхротронное излучение 
701 1 |a Pushilina  |b N. S.  |c physicist  |c associate Professor of Tomsk Polytechnic University, candidate of physico-mathematical Sciences  |f 1984-  |g Natalia Sergeevna  |3 (RuTPU)RU\TPU\pers\30838  |9 15085 
701 1 |a Kudiyarov  |b V. N.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Candidate of Technical Sciences  |f 1990-  |g Victor Nikolaevich  |y Tomsk  |3 (RuTPU)RU\TPU\pers\30836  |9 15083 
701 1 |a Syrtanov  |b M. S.  |c physicist  |c Associate Professor, Researcher of Tomsk Polytechnic University, Candidate of Technical Sciences  |f 1990-  |g Maksim Sergeevich  |3 (RuTPU)RU\TPU\pers\34764  |9 18114 
701 1 |a Kashkarov  |b E. B.  |c Physicist  |c Associate Professor, Researcher of Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences  |f 1991-  |g Egor Borisovich  |3 (RuTPU)RU\TPU\pers\34949  |9 18267 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа ядерных технологий  |b Отделение экспериментальной физики  |3 (RuTPU)RU\TPU\col\23549 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Институт неразрушающего контроля  |b Международная научно-образовательная лаборатория неразрушающего контроля  |3 (RuTPU)RU\TPU\col\19961 
801 2 |a RU  |b 63413507  |c 20210412  |g RCR 
850 |a 63413507 
856 4 |u https://doi.org/10.1134/S1027451019030170 
942 |c CF