Overcoming the delivery problem for therapeutic genome editing: Current status and perspective of non-viral methods

Detalles Bibliográficos
Parent link:Biomaterials
Vol. 258.— 2020.— [120282, 25 p.]
Autor Corporativo: Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий (ИШХБМТ)
Otros Autores: Mashel T. V. Tatiana Vladimirovna, Tarakanchikova Ya. V. Yana Vladimirovna, Muslimov A. R. Albert Radikovich, Zyuzin M. V. Mikhail, Timin A. S. Aleksandr Sergeevich, Lepik K. V., Fehse B.
Sumario:Title screen
Besides its broad application in research and biotechnology, genome editing (GE) has great potential for clinical gene therapy, but delivery of GE tools remains a bottleneck. Whereas significant progress has been made in ex vivo GE delivery (e.g., by electroporation), establishment of efficient and safe in vivo delivery systems is still a challenge. Above and beyond standard vector requirements (safety, minimal/absent toxicity and immunogenicity, sufficient packaging capacity, targeting, straight and low-cost large-scale good manufacturing practice (GMP) production), GE delivery systems ideally use a hit-and-run principle to minimize off-targets as well as display of immunogenic peptides. Since currently used viral vectors do not fulfil all of these requirements, the broad variety of non-viral delivery platforms represents a promising alternative. This review provides a comprehensive analysis of the most relevant aspects of non-viral physical and chemical delivery methods in non-clinical studies and clinical trials, ranging from classic electroporation to advanced drug carriers that can transport GE tools in form of plasmid DNAs (pDNAs), mRNAs, and ribonucleoproteins (RNPs). For comparison, advantages and shortcomings of viral delivery systems are shortly discussed. In summary, we review various delivery approaches and discuss the future perspectives to use drug carriers for in vivo GE in clinical trials.
Режим доступа: по договору с организацией-держателем ресурса
Lenguaje:inglés
Publicado: 2020
Materias:
Acceso en línea:https://doi.org/10.1016/j.biomaterials.2020.120282
Formato: Electrónico Capítulo de libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=664341

MARC

LEADER 00000naa0a2200000 4500
001 664341
005 20250418113930.0
035 |a (RuTPU)RU\TPU\network\35525 
090 |a 664341 
100 |a 20210409d2020 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Overcoming the delivery problem for therapeutic genome editing: Current status and perspective of non-viral methods  |f T. V. Mashel, Ya. V. Tarakanchikova, A. R. Muslimov [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 281 tit.] 
330 |a Besides its broad application in research and biotechnology, genome editing (GE) has great potential for clinical gene therapy, but delivery of GE tools remains a bottleneck. Whereas significant progress has been made in ex vivo GE delivery (e.g., by electroporation), establishment of efficient and safe in vivo delivery systems is still a challenge. Above and beyond standard vector requirements (safety, minimal/absent toxicity and immunogenicity, sufficient packaging capacity, targeting, straight and low-cost large-scale good manufacturing practice (GMP) production), GE delivery systems ideally use a hit-and-run principle to minimize off-targets as well as display of immunogenic peptides. Since currently used viral vectors do not fulfil all of these requirements, the broad variety of non-viral delivery platforms represents a promising alternative. This review provides a comprehensive analysis of the most relevant aspects of non-viral physical and chemical delivery methods in non-clinical studies and clinical trials, ranging from classic electroporation to advanced drug carriers that can transport GE tools in form of plasmid DNAs (pDNAs), mRNAs, and ribonucleoproteins (RNPs). For comparison, advantages and shortcomings of viral delivery systems are shortly discussed. In summary, we review various delivery approaches and discuss the future perspectives to use drug carriers for in vivo GE in clinical trials. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Biomaterials 
463 |t Vol. 258  |v [120282, 25 p.]  |d 2020 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a genome editing 
610 1 |a TALENs 
610 1 |a CRISPR-Cas9 
610 1 |a gene knockout 
610 1 |a knock-in 
610 1 |a non-viral physical and chemical methods 
610 1 |a organic and inorganic delivery systems 
610 1 |a non-clinical studies 
610 1 |a clinical trials 
701 1 |a Mashel  |b T. V.  |g Tatiana Vladimirovna 
701 1 |a Tarakanchikova  |b Ya. V.  |g Yana Vladimirovna 
701 1 |a Muslimov  |b A. R.  |g Albert Radikovich 
701 1 |a Zyuzin  |b M. V.  |g Mikhail 
701 1 |a Timin  |b A. S.  |c Chemist  |c Associate Scientist of Tomsk Polytechnic University  |f 1989-  |g Aleksandr Sergeevich  |3 (RuTPU)RU\TPU\pers\37036  |9 20051 
701 1 |a Lepik  |b K. V. 
701 1 |a Fehse  |b B. 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа химических и биомедицинских технологий (ИШХБМТ)  |c (2017- )  |3 (RuTPU)RU\TPU\col\23537 
801 2 |a RU  |b 63413507  |c 20210409  |g RCR 
850 |a 63413507 
856 4 |u https://doi.org/10.1016/j.biomaterials.2020.120282 
942 |c CF