Surface modification of Al by high-intensity low-energy Ti-ion implantation: Microstructure, mechanical and tribological properties

Bibliografiske detaljer
Parent link:Surface and Coatings Technology
Vol. 372.— 2019.— [8 p.]
Corporate Authors: Национальный исследовательский Томский политехнический университет Инженерная школа ядерных технологий Научная лаборатория высокоинтенсивной имплантации ионов, Национальный исследовательский Томский политехнический университет Инженерная школа ядерных технологий Отделение экспериментальной физики
Andre forfattere: Ryabchikov A. I. Aleksandr Ilyich, Kashkarov E. B. Egor Borisovich, Shevelev A. E. Aleksey Eduardovich, Obrosov A. Aleksey, Sivin D. O. Denis Olegovich
Summary:Title screen
A high-intensity metal ribbon ion beam was generated using plasma immersion extraction and the acceleration of the metal ions with their subsequent ballistic focusing using a cylindrical grid electrode under a repetitively pulsed bias. To generate the dense metal plasma flow, two water-cooled vacuum arc evaporators with Ti cathodes were used. The ion current density reached 43 mA/cm2 at the arc discharge current of 130 A. High-intensity ion implantation (HIII) with a low ion energy ribbon beam was used for the surface modification of the aluminium. The irradiation fluence was changed from 1.5•1020 ion/cm2 to 4•1020 ion/cm2 with a corresponding increase in the implantation temperature from 623 to 823 K. The structure and composition of the Ti-implanted aluminium were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX). The mechanical properties and wear resistance were measured using nanoindentation and “pin-on-disk” testing, respectively. It was shown that the HIII method can be used to form a deep intermetallic Al3Ti layer. It has been established that a thin (0.4 [mu]m) modified layer with a hcp Ti(Al) structure is only formed on the surface at 623 K, while the formation of the ordered Al3Ti intermetallic phase occurs at the implantation temperatures of 723 and 823 K. Despite the significant ion sputtering of the surface, the thickness of the modified layer increases from ~1 [mu]m to ~6 [mu]m, and the implantation temperature rises from 723 to 823 K. It was found that the homogeneous intermetallic Al3Ti layer with a thickness of up to 5 [mu]m was formed at 823 К. The mechanical and tribological properties of the aluminium were substantially improved after HIII. For the Ti-implanted aluminium, the hardness of the surface layer increases from 0.4 GPa (undoped Al) to 3.5-4 GPa, while the wear resistance increases by more than an order of magnitude.
Режим доступа: по договору с организацией-держателем ресурса
Sprog:engelsk
Udgivet: 2019
Fag:
Online adgang:https://doi.org/10.1016/j.surfcoat.2019.05.020
Format: Electronisk Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=664302

MARC

LEADER 00000naa0a2200000 4500
001 664302
005 20250424112948.0
035 |a (RuTPU)RU\TPU\network\35486 
035 |a RU\TPU\network\31275 
090 |a 664302 
100 |a 20210407d2019 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Surface modification of Al by high-intensity low-energy Ti-ion implantation: Microstructure, mechanical and tribological properties  |f A. I. Ryabchikov, E. B. Kashkarov, A. E. Shevelev [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 38 tit.] 
330 |a A high-intensity metal ribbon ion beam was generated using plasma immersion extraction and the acceleration of the metal ions with their subsequent ballistic focusing using a cylindrical grid electrode under a repetitively pulsed bias. To generate the dense metal plasma flow, two water-cooled vacuum arc evaporators with Ti cathodes were used. The ion current density reached 43 mA/cm2 at the arc discharge current of 130 A. High-intensity ion implantation (HIII) with a low ion energy ribbon beam was used for the surface modification of the aluminium. The irradiation fluence was changed from 1.5•1020 ion/cm2 to 4•1020 ion/cm2 with a corresponding increase in the implantation temperature from 623 to 823 K. The structure and composition of the Ti-implanted aluminium were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX). The mechanical properties and wear resistance were measured using nanoindentation and “pin-on-disk” testing, respectively. It was shown that the HIII method can be used to form a deep intermetallic Al3Ti layer. It has been established that a thin (0.4 [mu]m) modified layer with a hcp Ti(Al) structure is only formed on the surface at 623 K, while the formation of the ordered Al3Ti intermetallic phase occurs at the implantation temperatures of 723 and 823 K. Despite the significant ion sputtering of the surface, the thickness of the modified layer increases from ~1 [mu]m to ~6 [mu]m, and the implantation temperature rises from 723 to 823 K. It was found that the homogeneous intermetallic Al3Ti layer with a thickness of up to 5 [mu]m was formed at 823 К. The mechanical and tribological properties of the aluminium were substantially improved after HIII. For the Ti-implanted aluminium, the hardness of the surface layer increases from 0.4 GPa (undoped Al) to 3.5-4 GPa, while the wear resistance increases by more than an order of magnitude. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Surface and Coatings Technology 
463 |t Vol. 372  |v [8 p.]  |d 2019 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a ion implantation 
610 1 |a ribbon ion beamIntermetallics 
610 1 |a aluminium 
610 1 |a titanium 
610 1 |a surface modification 
610 1 |a ионная имплантация 
610 1 |a ионные пучки 
610 1 |a алюминий 
610 1 |a титан 
610 1 |a модификации 
610 1 |a поверхности 
701 1 |a Ryabchikov  |b A. I.  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |c physicist  |f 1950-  |g Aleksandr Ilyich  |3 (RuTPU)RU\TPU\pers\30912 
701 1 |a Kashkarov  |b E. B.  |c Physicist  |c Associate Professor, Researcher of Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences  |f 1991-  |g Egor Borisovich  |3 (RuTPU)RU\TPU\pers\34949  |9 18267 
701 1 |a Shevelev  |b A. E.  |c Physicist  |c Engineer of Tomsk Polytechnic University  |f 1990-  |g Aleksey Eduardovich  |3 (RuTPU)RU\TPU\pers\36832 
701 1 |a Obrosov  |b A.  |g Aleksey 
701 1 |a Sivin  |b D. O.  |c physicist  |c Senior researcher of Tomsk Polytechnic University, Candidate of technical sciences  |f 1978-  |g Denis Olegovich  |3 (RuTPU)RU\TPU\pers\34240 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа ядерных технологий  |b Научная лаборатория высокоинтенсивной имплантации ионов  |3 (RuTPU)RU\TPU\col\23698 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа ядерных технологий  |b Отделение экспериментальной физики  |3 (RuTPU)RU\TPU\col\23549 
801 0 |a RU  |b 63413507  |c 20210407  |g RCR 
850 |a 63413507 
856 4 |u https://doi.org/10.1016/j.surfcoat.2019.05.020 
942 |c CF