Application of Cross-correlation Analysis Method for Measurement of the Fluid Flow Rate Based on X-ray Radiation

Podrobná bibliografie
Parent link:Journal of Nano- and Electronic Physics
Vol. 11, № 1.— 2019.— [01025, 5 p.]
Korporace: Национальный исследовательский Томский политехнический университет Физико-технический институт Кафедра прикладной физики (№ 12) Международная научно-образовательная лаборатория "Рентгеновская оптика", Национальный исследовательский Томский политехнический университет Исследовательская школа физики высокоэнергетических процессов
Další autoři: Borodulya N. A. Nikolay, Rezaev R. O. Roman Olegovich, Chistyakov S. G. Sergey Gennadevich, Smirnova E. I. Ekaterina Ivanovna, Gogolev A. S. Aleksey Sergeevich, Filatov N. A. Nikolay Alexandrovich
Shrnutí:Title screen
In this work, we have demonstrated a principal scheme of application of cross-correlation analysis method for the determinationof the velocity of a moving object in a fluid. In particular, the peak values of the correlation function differ from the background by two times. It allows us to accurately detect the useful signal. Generalization of the proposed approach to the case of determination of the fluid flow rate does not require modification of the basic principles of installations or cross-correlation method. The scheme of the developed experimental setup is the following: X-ray source produces the radiation with a complex spectrum, which is directed to the pipe filled with a multicomponent mixture. One part of the X-rays passes through the windows made of material with the low absorption coefficient and the mixture. Another part of radiation passes through the pipe’s walls and is not practically absorbed by the walls, thereby forming a narrow beam. The beam, having passed through a multicomponent mixture, becomes a carrier of information about its characteristics, as well as the dependence on the composition and parameters of multiphase liquids. The X-ray radiation propagates and is scattered due to the photoelectric effect and Compton scattering. A crystalline monochromator analyzer consists of two single-crystal plastic cores (111) and (100). A part of the X-ray beam satisfying the Bragg conditions diffracts on the crystal monochromator analyzer, the other part passes it without deviations. Differential crystalline monochromator-analyzer radiation is directed to the counter ionizing radiation. A two-channel scintillation counter ionizing radiation registers monochromatic radiation at low and high energy corresponding to the Bragg condition for the crystal monochromator-analyzer.
Jazyk:angličtina
Vydáno: 2019
Témata:
On-line přístup:https://doi.org/10.21272/jnep.11(1).01025
Médium: Elektronický zdroj Kapitola
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=664255

MARC

LEADER 00000naa0a2200000 4500
001 664255
005 20250424154103.0
035 |a (RuTPU)RU\TPU\network\35439 
090 |a 664255 
100 |a 20210405d2019 k||y0rusy50 ba 
101 0 |a eng 
102 |a UA 
135 |a drgn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Application of Cross-correlation Analysis Method for Measurement of the Fluid Flow Rate Based on X-ray Radiation  |f N. A. Borodulya, R. O. Rezaev, S. G. Chistyakov [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 12 tit.] 
330 |a In this work, we have demonstrated a principal scheme of application of cross-correlation analysis method for the determinationof the velocity of a moving object in a fluid. In particular, the peak values of the correlation function differ from the background by two times. It allows us to accurately detect the useful signal. Generalization of the proposed approach to the case of determination of the fluid flow rate does not require modification of the basic principles of installations or cross-correlation method. The scheme of the developed experimental setup is the following: X-ray source produces the radiation with a complex spectrum, which is directed to the pipe filled with a multicomponent mixture. One part of the X-rays passes through the windows made of material with the low absorption coefficient and the mixture. Another part of radiation passes through the pipe’s walls and is not practically absorbed by the walls, thereby forming a narrow beam. The beam, having passed through a multicomponent mixture, becomes a carrier of information about its characteristics, as well as the dependence on the composition and parameters of multiphase liquids. The X-ray radiation propagates and is scattered due to the photoelectric effect and Compton scattering. A crystalline monochromator analyzer consists of two single-crystal plastic cores (111) and (100). A part of the X-ray beam satisfying the Bragg conditions diffracts on the crystal monochromator analyzer, the other part passes it without deviations. Differential crystalline monochromator-analyzer radiation is directed to the counter ionizing radiation. A two-channel scintillation counter ionizing radiation registers monochromatic radiation at low and high energy corresponding to the Bragg condition for the crystal monochromator-analyzer. 
461 |t Journal of Nano- and Electronic Physics 
463 |t Vol. 11, № 1  |v [01025, 5 p.]  |d 2019 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a cross-correlation analysis 
610 1 |a X-ray radiation 
610 1 |a fluid flow rate 
701 1 |a Borodulya  |b N. A.  |g Nikolay 
701 1 |a Rezaev  |b R. O.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences  |f 1982-  |g Roman Olegovich  |3 (RuTPU)RU\TPU\pers\31777 
701 1 |a Chistyakov  |b S. G.  |c Specialist in the field of automatic control  |c Engineer of Tomsk Polytechnic University  |f 1978-  |g Sergey Gennadevich  |3 (RuTPU)RU\TPU\pers\45878 
701 1 |a Smirnova  |b E. I.  |g Ekaterina Ivanovna 
701 1 |a Gogolev  |b A. S.  |c physicist  |c associate professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences  |f 1983-  |g Aleksey Sergeevich  |3 (RuTPU)RU\TPU\pers\31537  |9 15698 
701 1 |a Filatov  |b N. A.  |c Specialist in the field of automatic control  |c Engineer of Tomsk Polytechnic University  |f 1983-  |g Nikolay Alexandrovich  |3 (RuTPU)RU\TPU\pers\40863 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Физико-технический институт  |b Кафедра прикладной физики (№ 12)  |b Международная научно-образовательная лаборатория "Рентгеновская оптика"  |3 (RuTPU)RU\TPU\col\19530 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа физики высокоэнергетических процессов  |c (2017- )  |3 (RuTPU)RU\TPU\col\23551 
801 0 |a RU  |b 63413507  |c 20140916 
801 2 |a RU  |b 63413507  |c 20210405  |g RCR 
850 |a 63413507 
856 4 |u https://doi.org/10.21272/jnep.11(1).01025 
942 |c CF