Contract-Based Small-Cell Caching for Data Disseminations in Ultra-Dense Cellular Networks

Detalles Bibliográficos
Parent link:IEEE Transactions on mobile computing
Vol. 18, iss. 5.— 2019.— [P. 1040-1053]
Autor Corporativo: Национальный исследовательский Томский политехнический университет Инженерная школа информационных технологий и робототехники Научно-образовательный центр "Автоматизация и информационные технологии"
Otros Autores: Li Dzhun, Chu Shunfeng, Shu Feng, Vu Zhanglin, Dzhayakodi Arachshiladzh D. N. K. Dushanta Nalin Kumara
Sumario:Title screen
Evidence indicates that demands from mobile users (MU) on popular cloud content, e.g., video clips, account for a dramatic increase in data traffic over cellular networks. The repetitive downloading of hot content from cloud servers will inevitably bring a vast quantity of redundant data transmissions to networks. A strategy of distributively pre-storing popular cloud content in the memories of small-cell base stations (SBS), namely, small-cell caching, is an efficient technology for reducing the communication latency whilst mitigating the redundant data streaming substantially. In this paper, we establish a commercialized small-cell caching system consisting of a network service provider (NSP), several video providers (VP), and randomly distributed MUs. We conceive this system in the context of 5G cellular networks, where the SBSs are ultra-densely deployed with the intensity much higher than that of the MUs. In such a system, the NSP, in charge of the SBSs, wishes to lease these SBSs to the VPs for the purpose of making profits, whilst the VPs, after pushing popular videos into the rented SBSs, can provide faster local video transmissions to the MUs, thereby gaining more profits. Specifically, we first model the MUs and SBSs as two independent Poisson point processes, and develop, via stochastic geometry theory, the probability of the specific event that an MU obtains the video of its choice directly from the memory of an SBS. Then, with the help of the probability derived, we formulate the profits of both the NSP and the VPs. Next, we solve the profit maximization problem based on the framework of contract theory, where the NSP acts as a monopolist setting up the optimal contract according to the statistical information of the VPs. Incentive mechanisms are also designed to motivate each VP to choose a proper resource-price item offered by the NSP. Numerical results validate the effectiveness of our proposed contract framework for the commercial caching system.
Режим доступа: по договору с организацией-держателем ресурса
Lenguaje:inglés
Publicado: 2019
Materias:
Acceso en línea:https://doi.org/10.1109/TMC.2018.2853746
Formato: Electrónico Capítulo de libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=664217

MARC

LEADER 00000naa0a2200000 4500
001 664217
005 20250424163217.0
035 |a (RuTPU)RU\TPU\network\35401 
090 |a 664217 
100 |a 20210401d2019 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Contract-Based Small-Cell Caching for Data Disseminations in Ultra-Dense Cellular Networks  |f Li Dzhun, Chu Shunfeng, Shu Feng [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 33 tit.] 
330 |a Evidence indicates that demands from mobile users (MU) on popular cloud content, e.g., video clips, account for a dramatic increase in data traffic over cellular networks. The repetitive downloading of hot content from cloud servers will inevitably bring a vast quantity of redundant data transmissions to networks. A strategy of distributively pre-storing popular cloud content in the memories of small-cell base stations (SBS), namely, small-cell caching, is an efficient technology for reducing the communication latency whilst mitigating the redundant data streaming substantially. In this paper, we establish a commercialized small-cell caching system consisting of a network service provider (NSP), several video providers (VP), and randomly distributed MUs. We conceive this system in the context of 5G cellular networks, where the SBSs are ultra-densely deployed with the intensity much higher than that of the MUs. In such a system, the NSP, in charge of the SBSs, wishes to lease these SBSs to the VPs for the purpose of making profits, whilst the VPs, after pushing popular videos into the rented SBSs, can provide faster local video transmissions to the MUs, thereby gaining more profits. Specifically, we first model the MUs and SBSs as two independent Poisson point processes, and develop, via stochastic geometry theory, the probability of the specific event that an MU obtains the video of its choice directly from the memory of an SBS. Then, with the help of the probability derived, we formulate the profits of both the NSP and the VPs. Next, we solve the profit maximization problem based on the framework of contract theory, where the NSP acts as a monopolist setting up the optimal contract according to the statistical information of the VPs. Incentive mechanisms are also designed to motivate each VP to choose a proper resource-price item offered by the NSP. Numerical results validate the effectiveness of our proposed contract framework for the commercial caching system. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t IEEE Transactions on mobile computing 
463 |t Vol. 18, iss. 5  |v [P. 1040-1053]  |d 2019 
610 1 |a труды учёных ТПУ 
610 1 |a электронный ресурс 
610 1 |a contracts 
610 1 |a streaming media 
610 1 |a cellular networks 
610 1 |a 5G mobile communication 
610 1 |a cloud computing 
610 1 |a mobile computing 
610 1 |a base stations 
701 0 |a Li Dzhun 
701 0 |a Chu Shunfeng 
701 0 |a Shu Feng 
701 0 |a Vu Zhanglin 
701 1 |a Dzhayakodi Arachshiladzh  |b D. N. K.  |c specialist in the field of electronics  |c Professor of Tomsk Polytechnic University  |f 1983-  |g Dushanta Nalin Kumara  |3 (RuTPU)RU\TPU\pers\37962 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа информационных технологий и робототехники  |b Научно-образовательный центр "Автоматизация и информационные технологии"  |3 (RuTPU)RU\TPU\col\27515 
801 0 |a RU  |b 63413507  |c 20210401  |g RCR 
850 |a 63413507 
856 4 |u https://doi.org/10.1109/TMC.2018.2853746 
942 |c CF