Effect of emulsifier properties and dispersed particle size on the explosive breakup of fuel microemulsion drops

Bibliographic Details
Parent link:AIP Conference Proceedings
Vol. 2135 : Heat and mass transfer in the thermal control system of technical and technological energy equipment (HMTTSC 2019).— 2019.— [020004, 6 p.]
Corporate Author: Национальный исследовательский Томский политехнический университет Инженерная школа энергетики Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)
Other Authors: Ashikhmin A. E. Alexander Evgenjevich, Lavrentjev G. V. Grigory Viktorovich, Piskunov M. V. Maksim Vladimirovich, Yanovsky V. A. Vyacheslav Aleksandrovich
Summary:Title screen
The analysis of the effect of emulsifier properties on the breakup characteristics of fuel microemulsion (FME) droplets heated on a heated surface was carried out using such co-surfactants as nonanol-1, 2-ethylhexanol and isomyl alcohol with carbon chain lengths of 9, 8, and 5, respectively. The effect of the particle (microdroplets) size of the dispersed phase on the temporal characteristics of vaporization and explosive breakup of FME droplets in experiments with conductive heating was examined. A physical description of vaporization and explosive breakup of FME droplets during conductive heating was performed. The minimum film boiling temperatures of FME droplets were determined. The results will be useful in the creation of new water-in-diesel microemulsions, as well as in the development of technologies for the secondary atomization of such fuels in the combustion chambers of engines and power plants.
Режим доступа: по договору с организацией-держателем ресурса
Language:English
Published: 2019
Subjects:
Online Access:https://doi.org/10.1063/1.5120641
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=664082

Similar Items