Controllable Synthesis of Calcium Carbonate with Different Geometry: Comprehensive Analysis of Particle Formation, Cellular Uptake, and Biocompatibility

מידע ביבליוגרפי
Parent link:ACS Sustainable Chemistry and Engineering
Vol. 7, No. 23.— 2019.— [P. 19142–19156]
מחבר תאגידי: Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий
מחברים אחרים: Barhom H. Hani, Goncharenko A. A. Aleksandr Aleksandrovich, Khafutdinov L. Landysh, Peltek A. O. Aleksey Olekseevich, Muslimov A. R. Albert Radikovich, Koval O. Yu. Olga, Eliseev I. Igor, Mancheev A. Andrey, Gorin D. Dmitry, Shishkin I. I. Ivan, Noskov R. E. Roman, Timin A. S. Aleksandr Sergeevich, Ginzburg P. Pavel, Zyuzin M. V. Mikhail
סיכום:Title screen
Carefully designed micro- and nanocarriers can provide significant advantages over conventional macroscopic counterparts in drug delivery applications. For the successful delivery of bioactive compounds, carriers should possess a high loading capacity, triggered release mechanisms, biocompatibility, and biodegradability. Porous calcium carbonate (CaCO3) is one of the most promising platforms, which can encompass all the aforementioned requirements. Here, we study both the formation of particles and the biological applicability of CaCO3. In particular, differently shaped anisotropic CaCO3 particles are synthesized using a sustainable and green approach based on coprecipitation of calcium chloride and sodium carbonate/bicarbonate at different ratios in the presence of organic additives. The impact of salt concentrations, reaction time, and organic additives are systematically investigated to achieve a controllable and reliable design of CaCO3 particles. It is demonstrated that the crystallinity (vaterite or calcite phase) of particles depends on the initial salt concentrations. The loading capacity of prepared CaCO3 particles is determined by their surface properties such as specific surface area, pore size, and zeta-potential. Differently shaped CaCO3 particles (spheroids, ellipsoids, and toroids) are exploited, and their uptake efficiency on an example of C6 glioma cells is evaluated. The results show that ellipsoidal particles are more likely to be internalized by cancer cells. All the particles tested are also found to have good biocompatibility. The ability to design physicochemical properties of CaCO3 particles has a significant impact on drug delivery applications since particle geometry substantially affects cell behavior (internalization and toxicity).
Режим доступа: по договору с организацией-держателем ресурса
יצא לאור: 2019
נושאים:
גישה מקוונת:https://doi.org/10.1021/acssuschemeng.9b05128
פורמט: אלקטרוני Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=663974

MARC

LEADER 00000naa0a2200000 4500
001 663974
005 20250429132120.0
035 |a (RuTPU)RU\TPU\network\35144 
035 |a RU\TPU\network\34840 
090 |a 663974 
100 |a 20210322d2019 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Controllable Synthesis of Calcium Carbonate with Different Geometry: Comprehensive Analysis of Particle Formation, Cellular Uptake, and Biocompatibility  |f H. Barhom, A. A. Goncharenko, L. Khafutdinov [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a Carefully designed micro- and nanocarriers can provide significant advantages over conventional macroscopic counterparts in drug delivery applications. For the successful delivery of bioactive compounds, carriers should possess a high loading capacity, triggered release mechanisms, biocompatibility, and biodegradability. Porous calcium carbonate (CaCO3) is one of the most promising platforms, which can encompass all the aforementioned requirements. Here, we study both the formation of particles and the biological applicability of CaCO3. In particular, differently shaped anisotropic CaCO3 particles are synthesized using a sustainable and green approach based on coprecipitation of calcium chloride and sodium carbonate/bicarbonate at different ratios in the presence of organic additives. The impact of salt concentrations, reaction time, and organic additives are systematically investigated to achieve a controllable and reliable design of CaCO3 particles. It is demonstrated that the crystallinity (vaterite or calcite phase) of particles depends on the initial salt concentrations. The loading capacity of prepared CaCO3 particles is determined by their surface properties such as specific surface area, pore size, and zeta-potential. Differently shaped CaCO3 particles (spheroids, ellipsoids, and toroids) are exploited, and their uptake efficiency on an example of C6 glioma cells is evaluated. The results show that ellipsoidal particles are more likely to be internalized by cancer cells. All the particles tested are also found to have good biocompatibility. The ability to design physicochemical properties of CaCO3 particles has a significant impact on drug delivery applications since particle geometry substantially affects cell behavior (internalization and toxicity). 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t ACS Sustainable Chemistry and Engineering 
463 |t Vol. 7, No. 23  |v [P. 19142–19156]  |d 2019 
610 1 |a труды учёных ТПУ 
610 1 |a электронный ресурс 
610 1 |a calcium carbonate 
610 1 |a formation mechanisms 
610 1 |a drug carriers 
610 1 |a adsorption 
610 1 |a cell uptake 
610 1 |a toxicity 
610 1 |a карбонат кальция 
610 1 |a адсорбция 
610 1 |a токсичность 
701 1 |a Barhom  |b H.  |g Hani 
701 1 |a Goncharenko  |b A. A.  |g Aleksandr Aleksandrovich 
701 1 |a Khafutdinov  |b L.  |g Landysh 
701 1 |a Peltek  |b A. O.  |g Aleksey Olekseevich 
701 1 |a Muslimov  |b A. R.  |g Albert Radikovich 
701 1 |a Koval  |b O. Yu.  |g Olga 
701 1 |a Eliseev  |b I.  |g Igor 
701 1 |a Mancheev  |b A.  |g Andrey 
701 1 |a Gorin  |b D.  |g Dmitry 
701 1 |a Shishkin  |b I. I.  |g Ivan 
701 1 |a Noskov  |b R. E.  |g Roman 
701 1 |a Timin  |b A. S.  |c Chemist  |c Associate Scientist of Tomsk Polytechnic University  |f 1989-  |g Aleksandr Sergeevich  |3 (RuTPU)RU\TPU\pers\37036 
701 1 |a Ginzburg  |b P.  |g Pavel 
701 1 |a Zyuzin  |b M. V.  |g Mikhail 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа химических и биомедицинских технологий  |c (2017- )  |3 (RuTPU)RU\TPU\col\23537 
801 0 |a RU  |b 63413507  |c 20210322  |g RCR 
850 |a 63413507 
856 4 |u https://doi.org/10.1021/acssuschemeng.9b05128 
942 |c CF