Highly filled poly(l-lactic acid)/hydroxyapatite composite for 3D printing of personalized bone tissue engineering scaffolds
| Parent link: | Journal of Applied Polymer Science Vol. 138, iss. 2.— 2021.— [49662, 4 p.] |
|---|---|
| Співавтори: | Национальный исследовательский Томский политехнический университет Инженерная школа ядерных технологий Научно-образовательный центр Б. П. Вейнберга, Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий |
| Інші автори: | Dubinenko G. E. Gleb Evgenjevich, Zinovyev (Zinovjev, Zinoviev) A. L. Alexey Leonidovich, Bolbasov E. N. Evgeny Nikolaevich, Kozelskaya A. I. Anna Ivanovna, Shesterikov E. V. Evgeny Viktorovich, Novikov V. T. Viktor Timofeevich, Tverdokhlebov S. I. Sergei Ivanovich |
| Резюме: | Title screen The designing of new biodegradable polymer composites is one of the most promising areas of modern orthopedics and regenerative surgery. At present, a number of methods have been proposed for designing and processing biodegradable polymer composites via various 3D printing technologies; however, the homogeneity of filler distribution together with mechanical properties of scaffolds made of such composites are far from those required for clinical use. In this study, the method for producing biodegradable composite material based on poly(l-lactic acid) (PLLA) solution in organic solvent and hydroxyapatite (HAp) powder was proposed. The influence of HAp weight fraction and additional annealing on PLLA matrix crystallinity was investigated. It was shown that crystallinity of PLLA decreases from 58.84?±?1.21 to 17.33?±?1.69 as HAp weight fraction increased from 0 to 50?wt%. However, HAp filler promoted PLLA crystallites growth according to the X-ray powder diffraction analysis. The results of nanoindentation showed Young's modulus values of the 3D-printed scaffolds with 50?wt% of HAp at the level of human femur and tibia. Режим доступа: по договору с организацией-держателем ресурса |
| Мова: | Англійська |
| Опубліковано: |
2021
|
| Предмети: | |
| Онлайн доступ: | https://doi.org/10.1002/app.49662 |
| Формат: | Електронний ресурс Частина з книги |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=663844 |
Схожі ресурси
Tissue Scaffolds
Опубліковано: (2022)
Опубліковано: (2022)
Synthesis of poly(l-lactic acid)-hydroxyapatite composite as material for 3d printing of bone tissue growth stimulating implants
за авторством: Dubinenko G. E. Gleb Evgenjevich
Опубліковано: (2018)
за авторством: Dubinenko G. E. Gleb Evgenjevich
Опубліковано: (2018)
Hybrid biodegradable electrospun scaffolds based on poly(l-lactic acid) and reduced graphene oxide with improved piezoelectric response
Опубліковано: (2022)
Опубліковано: (2022)
Preparation of Poly(L-lactic acid)/Hydroxyapatite composite scaffolds by fused deposit modeling 3D printing
Опубліковано: (2020)
Опубліковано: (2020)
3D-printed biodegradable composite poly(lactic acid)-based scaffolds with a shape memory effect for bone tissue engineering
Опубліковано: (2025)
Опубліковано: (2025)
Thermophysical and Dielectric Properties of Polymer Composites Filled with Hexagonal Boron Nitride
за авторством: Lebedev S. M. Sergey Mikhailovich
Опубліковано: (2022)
за авторством: Lebedev S. M. Sergey Mikhailovich
Опубліковано: (2022)
Simultaneous HPLC-UV Determination of Lactic Acid, Glycolic Acid, Glycolide, Lactide and Ethyl Acetate in Monomers for Producing Biodegradable Polymers
Опубліковано: (2014)
Опубліковано: (2014)
Electrospun composites of poly-3-hydroxybutyrate reinforced with conductive fillers for in vivo bone regeneration
Опубліковано: (2022)
Опубліковано: (2022)
Effect of annealing on mechanical and morphological properties of Poly(L-lactic acid)/Hydroxyapatite composite as material for 3D printing of bone tissue growth stimulating implants
Опубліковано: (2019)
Опубліковано: (2019)
In vitro degradation behaviour of hybrid electrospun scaffolds of polycaprolactone and strontium-containing hydroxyapatite microparticles
Опубліковано: (2019)
Опубліковано: (2019)
Structural and Electromagnetic Properties of Lithium Ferrite Manufactured by Extrusion Printing
Опубліковано: (2024)
Опубліковано: (2024)
Rheological Characteristics of Highly Concentrated Silica Glass Suspensions for 3D Printing of Refractories
Опубліковано: (2024)
Опубліковано: (2024)
Influence of hydroxyapatite filling degree on mechanical properties of 3D-printed poly(l-lactic acid)-based implantable material1
Опубліковано: (2018)
Опубліковано: (2018)
Enhanced properties of poly(ε‐caprolactone)/polyvinylpyrrolidone electrospun scaffolds fabricated using 1,1,1,3,3,3‐hexafluoro‐2‐propanol
Опубліковано: (2021)
Опубліковано: (2021)
Structural and electromagnetic properties of 3D printed and electron beam sintered lithium ferrite ceramic
Опубліковано: (2024)
Опубліковано: (2024)
Study of the morphology and structure of hybrid biodegradable 3d scaffolds based on piezoelectric Poly(l-lactic acid) and rGO/GO for bone tissue engineering
Опубліковано: (2020)
Опубліковано: (2020)
Совершенствование ультразвуковой сварки и создание аппаратов для её реализации
за авторством: Хмелёв В. Н. Владимир Николаевич
Опубліковано: (2013)
за авторством: Хмелёв В. Н. Владимир Николаевич
Опубліковано: (2013)
Surface modification of electrospun poly-(l-lactic) acid scaffolds by reactive magnetron sputtering
Опубліковано: (2018)
Опубліковано: (2018)
Multiscale design of an additively manufactured Ti–Nb alloy with nanostructured Sr-substituted hydroxyapatite coating for bone tissue engineering
Опубліковано: (2025)
Опубліковано: (2025)
Solution blow spinning of PLLA/hydroxyapatite composite scaffolds for bone tissue engineering
Опубліковано: (2021)
Опубліковано: (2021)
New Biodegradable Copolymers Based on Betulin and Hydroxycarboxylic Acid Derivatives
Опубліковано: (2024)
Опубліковано: (2024)
Implementation of Differential Scanning Calorimetry when Studying Polymerization of Compounds Based on Glycolic Acid Ether
Опубліковано: (2015)
Опубліковано: (2015)
A first method for preparation of biodegradable fibrous scaffolds containing iodine on the fibre surfaces
Опубліковано: (2018)
Опубліковано: (2018)
Quasiparticles for the one-dimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation
за авторством: Kulagin A. E. Anton Evgenievich
Опубліковано: (2024)
за авторством: Kulagin A. E. Anton Evgenievich
Опубліковано: (2024)
Universal Approach to Integrating Reduced Graphene Oxide into Polymer Electronics
Опубліковано: (2023)
Опубліковано: (2023)
Computer-Aided Tissue Engineering
Опубліковано: (2012)
Опубліковано: (2012)
Osteogenic Potential and Long-Term Enzymatic Biodegradation of PHB-based Scaffolds with Composite Magnetic Nanofillers in a Magnetic Field
Опубліковано: (2024)
Опубліковано: (2024)
Review of Hybrid Materials Based on Polyhydroxyalkanoates for Tissue Engineering Applications
за авторством: Pryadko A. Artyom
Опубліковано: (2021)
за авторством: Pryadko A. Artyom
Опубліковано: (2021)
Biodegradable Electrically Conductive Polycaprolacton-Based Composites Filled with Carbon Nanotubes
за авторством: Lebedev S. M. Sergey Mikhailovich
Опубліковано: (2020)
за авторством: Lebedev S. M. Sergey Mikhailovich
Опубліковано: (2020)
Hybrid biodegradable scaffolds of piezoelectric polyhydroxybutyrate and conductive polyaniline: piezocharge constants and electric potential study
за авторством: Chernozem R. V. Roman Viktorovich
Опубліковано: (2018)
за авторством: Chernozem R. V. Roman Viktorovich
Опубліковано: (2018)
Time-stable wetting effect of plasma-treated biodegradable scaffolds functionalized with graphene oxide
Опубліковано: (2020)
Опубліковано: (2020)
Organ Tissue Engineering
Опубліковано: (2020)
Опубліковано: (2020)
Bone Research Protocols
Опубліковано: (2019)
Опубліковано: (2019)
Tissue-Engineered Vascular Grafts
Опубліковано: (2019)
Опубліковано: (2019)
Bone Morphogenetic Proteins Methods and Protocols /
Опубліковано: (2019)
Опубліковано: (2019)
Poly(lactic-acid)-based polymer composites and their characterization
Опубліковано: (2016)
Опубліковано: (2016)
Manufacturing poly(lactic acid)/metal composites and their characterization
за авторством: Lebedev S. M. Sergey Mikhailovich
Опубліковано: (2019)
за авторством: Lebedev S. M. Sergey Mikhailovich
Опубліковано: (2019)
Poly(lactic acid) based polymer composites for biomedicine
за авторством: Lebedev S. M. Sergey Mikhailovich
Опубліковано: (2020)
за авторством: Lebedev S. M. Sergey Mikhailovich
Опубліковано: (2020)
Vascularization for Tissue Engineering and Regenerative Medicine
Опубліковано: (2016)
Опубліковано: (2016)
3D Printing and Biofabrication
Опубліковано: (2016)
Опубліковано: (2016)
Схожі ресурси
-
Tissue Scaffolds
Опубліковано: (2022) -
Synthesis of poly(l-lactic acid)-hydroxyapatite composite as material for 3d printing of bone tissue growth stimulating implants
за авторством: Dubinenko G. E. Gleb Evgenjevich
Опубліковано: (2018) -
Hybrid biodegradable electrospun scaffolds based on poly(l-lactic acid) and reduced graphene oxide with improved piezoelectric response
Опубліковано: (2022) -
Preparation of Poly(L-lactic acid)/Hydroxyapatite composite scaffolds by fused deposit modeling 3D printing
Опубліковано: (2020) -
3D-printed biodegradable composite poly(lactic acid)-based scaffolds with a shape memory effect for bone tissue engineering
Опубліковано: (2025)