Evaluation of neutron activation of intermetallic matrices for dispersive nuclear fuel obtained by SH-synthesis

Détails bibliographiques
Parent link:Journal of Physics: Conference Series
Vol. 1439 : Modern Problems of Physics and Technology.— 2020.— [012040, 6 p.]
Collectivité auteur: Национальный исследовательский Томский политехнический университет Инженерная школа ядерных технологий Отделение ядерно-топливного цикла
Autres auteurs: Balachkov M. M. Maxim Mikhailovich, Dolmatov O. Yu. Oleg Yurevich, Kuznetsov M. S. Mikhail Sergeyevich, Kostyuchenko K. S. Kristina Sergeevna, Pimenov N. O. Nikita Olegovich, Permikin A. A. Anton Andreevich
Résumé:Title screen
The paper describes a technique for obtaining intermetallic matrix materials based on Zr-Al and Ni-Al systems for dispersive nuclear fuel. This type of fuel is planned to be used in existing and future high-temperature nuclear reactors. Physical and mathematical modelling of the process of activation of matrices by neutron radiation showed that upon reaching the value of thermal neutron fluence of the order of 2.76·1021 n·cm-2 , the activity of Zr-Al and Ni-Al matrices was 1.3·1010 and 0.2·1010 Bq/g, respectively. The analysis showed that in terms of exposure of irradiated fuel it is preferable to use a matrix based on the zirconium-aluminium system.
Publié: 2020
Sujets:
Accès en ligne:http://earchive.tpu.ru/handle/11683/64884
http://dx.doi.org/10.1088/1742-6596/1347/1/012040
Format: Électronique Chapitre de livre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=663824
Description
Résumé:Title screen
The paper describes a technique for obtaining intermetallic matrix materials based on Zr-Al and Ni-Al systems for dispersive nuclear fuel. This type of fuel is planned to be used in existing and future high-temperature nuclear reactors. Physical and mathematical modelling of the process of activation of matrices by neutron radiation showed that upon reaching the value of thermal neutron fluence of the order of 2.76·1021 n·cm-2 , the activity of Zr-Al and Ni-Al matrices was 1.3·1010 and 0.2·1010 Bq/g, respectively. The analysis showed that in terms of exposure of irradiated fuel it is preferable to use a matrix based on the zirconium-aluminium system.
DOI:10.1088/1742-6596/1347/1/012040