Heat transfer in a two-phase closed thermosyphon working in Polar Regions

التفاصيل البيبلوغرافية
Parent link:Thermal Science and Engineering Progress
Vol. 22.— 2021.— [100846, 12 p.]
مؤلف مشترك: Национальный исследовательский Томский политехнический университет Инженерная школа энергетики Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)
مؤلفون آخرون: Kuznetsov G. V. Geny Vladimirovich, Ponomarev K. O. Konstantin Olegovich, Feoktistov D. V. Dmitriy Vladimirovich, Orlova E. G. Evgeniya Georgievna, Lyulin Yu. V. Yury Vyacheslavovich, Ouerdane H. Henni
الملخص:Title screen
The observed influence of ambient air temperature on ground temperature in the Far North is an urgent problem as excessive warming of the ground may cause permafrost thawing and structural instability of the built environment. A promising solution is to use thermosyphon-based cooling systems for thermal stabilization of the ground surrounding the piles or other supporting elements of special constructions in the Far North. In this work, we experimentally studied the influence of air and ground temperatures and heating surface temperature that simulates the operation of heat-loaded equipment on the mechanisms of the condensate formation in a thermosyphon. We determined the effect of the thermosyphon operation on the change in ground temperature in the Far North and found the possibility of operation of the thermosyphon-based cooling system at air temperatures in the range of 4–10 °C. In addition, it was found that with an increase in the ambient air temperature from 4 to 10 °C, the ground temperature increased by 5–5.5 °C without the thermosyphon and by 3.1–4 °C with the thermosyphon. The operation of the thermosyphon in the ground layer made possible a two-fold reduction at least of its temperature, not only in close vicinity of the evaporation section, but also at a depth exceeding the height of the thermosyphon evaporation section. We also showed that there are two condensation modes (drop-streak and film-streak) when the heat flux supplied to the lower cover was between 0.7 and 5.1 kW/m2, and the condensation section was cooled due to natural convection.
Режим доступа: по договору с организацией-держателем ресурса
منشور في: 2021
الموضوعات:
الوصول للمادة أونلاين:https://doi.org/10.1016/j.tsep.2021.100846
التنسيق: الكتروني فصل الكتاب
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=663239

MARC

LEADER 00000naa0a2200000 4500
001 663239
005 20250425143651.0
035 |a (RuTPU)RU\TPU\network\34408 
035 |a RU\TPU\network\33511 
090 |a 663239 
100 |a 20210202d2021 k||y0rusy50 ba 
101 0 |a eng 
102 |a GB 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Heat transfer in a two-phase closed thermosyphon working in Polar Regions  |f G. V. Kuznetsov, K. O. Ponomarev, D. V. Feoktistov [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 80 tit.] 
330 |a The observed influence of ambient air temperature on ground temperature in the Far North is an urgent problem as excessive warming of the ground may cause permafrost thawing and structural instability of the built environment. A promising solution is to use thermosyphon-based cooling systems for thermal stabilization of the ground surrounding the piles or other supporting elements of special constructions in the Far North. In this work, we experimentally studied the influence of air and ground temperatures and heating surface temperature that simulates the operation of heat-loaded equipment on the mechanisms of the condensate formation in a thermosyphon. We determined the effect of the thermosyphon operation on the change in ground temperature in the Far North and found the possibility of operation of the thermosyphon-based cooling system at air temperatures in the range of 4–10 °C. In addition, it was found that with an increase in the ambient air temperature from 4 to 10 °C, the ground temperature increased by 5–5.5 °C without the thermosyphon and by 3.1–4 °C with the thermosyphon. The operation of the thermosyphon in the ground layer made possible a two-fold reduction at least of its temperature, not only in close vicinity of the evaporation section, but also at a depth exceeding the height of the thermosyphon evaporation section. We also showed that there are two condensation modes (drop-streak and film-streak) when the heat flux supplied to the lower cover was between 0.7 and 5.1 kW/m2, and the condensation section was cooled due to natural convection. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Thermal Science and Engineering Progress 
463 |t Vol. 22  |v [100846, 12 p.]  |d 2021 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a thermosyphon 
610 1 |a air temperature 
610 1 |a ground temperature 
610 1 |a polar regions 
610 1 |a heat transfer 
610 1 |a термосифоны 
610 1 |a температура воздуха 
610 1 |a полярные области 
610 1 |a теплопередача 
701 1 |a Kuznetsov  |b G. V.  |c Specialist in the field of heat power energy  |c Professor of Tomsk Polytechnic University, Doctor of Physical and Mathematical Sciences  |f 1949-  |g Geny Vladimirovich  |3 (RuTPU)RU\TPU\pers\31891  |9 15963 
701 1 |a Ponomarev  |b K. O.  |c specialist in the field of thermal engineering  |c engineer of Tomsk Polytechnic University  |f 1993-  |g Konstantin Olegovich  |3 (RuTPU)RU\TPU\pers\35642  |9 18811 
701 1 |a Feoktistov  |b D. V.  |c Specialist in the field of thermal engineering  |c Associate Professor; Deputy Director of Tomsk Polytechnic University, Candidate of technical sciences  |f 1983-  |g Dmitriy Vladimirovich  |3 (RuTPU)RU\TPU\pers\34158  |9 17698 
701 1 |a Orlova  |b E. G.  |c specialist in the field of thermal engineering  |c Associate Professor of Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences  |f 1991-  |g Evgeniya Georgievna  |3 (RuTPU)RU\TPU\pers\34157  |9 17697 
701 1 |a Lyulin  |b Yu. V.  |g Yury Vyacheslavovich 
701 1 |a Ouerdane  |b H.  |g Henni 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа энергетики  |b Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)  |3 (RuTPU)RU\TPU\col\23504 
801 2 |a RU  |b 63413507  |c 20210520  |g RCR 
850 |a 63413507 
856 4 |u https://doi.org/10.1016/j.tsep.2021.100846 
942 |c CF