Effect of Carbon Nanotubes and Graphene Nanoplatelets on the Mechanical Properties of Zirconia-Based Composites
| Parent link: | Energy Fluxes and Radiation Effects (EFRE-2020 online): proceedings of 7th International Congress, September 14-26, 2020, Tomsk, Russia/ National Research Tomsk Polytechnic University (TPU) ; Institute of Electrical and Electronics Engineers (IEEE) ; ed. N. A. Ratakhin. [P. 1169-1173].— , 2020 |
|---|---|
| Autor corporatiu: | , , |
| Altres autors: | , , , , , |
| Sumari: | Title screen In this work, ZrO2 composites reinforced by single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT) and graphene nanoplatelets (GNP) were investigated. Composites were prepared by spark plasma sintering at a temperature of 1500°C. The influence of various carbon nanomaterials (CNM) on the microstructure, densification, microhardness, fracture toughness and crack propagation of zirconia-based composites was investigated. It is found that CNMs retain their structure after high-temperature sintering. The maximum increase in fracture toughness from 4.0 MPa·m1/2 to 5.5 MPa·m 1/2 is found for a composite with SWCNTs. However, GNPs seem more effective as reinforcement than SWCNTs and MWCNTs, because the ZrO2 /GNP composite has an increased density (99.4%) and fracture toughness (5.2 MPa·m1/2 ) compared to ZrO2 ceramics and in addition, the microhardness is not so much reduced in comparison with the ZrO2 /SWCNT composite. Режим доступа: по договору с организацией-держателем ресурса |
| Idioma: | anglès |
| Publicat: |
2020
|
| Matèries: | |
| Accés en línia: | https://doi.org/10.1109/EFRE47760.2020.9242000 |
| Format: | Electrònic Capítol de llibre |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=663108 |
MARC
| LEADER | 00000naa2a2200000 4500 | ||
|---|---|---|---|
| 001 | 663108 | ||
| 005 | 20251216144947.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\34277 | ||
| 035 | |a RU\TPU\network\34267 | ||
| 090 | |a 663108 | ||
| 100 | |a 20210125d2020 k||y0rusy50 ba | ||
| 101 | 0 | |a eng | |
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Effect of Carbon Nanotubes and Graphene Nanoplatelets on the Mechanical Properties of Zirconia-Based Composites |f A. A. Leonov, M. P. Kalashnikov, Jing Li [et al.] | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 320 | |a [References: p. 1172-1173 (40 tit.)] | ||
| 330 | |a In this work, ZrO2 composites reinforced by single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT) and graphene nanoplatelets (GNP) were investigated. Composites were prepared by spark plasma sintering at a temperature of 1500°C. The influence of various carbon nanomaterials (CNM) on the microstructure, densification, microhardness, fracture toughness and crack propagation of zirconia-based composites was investigated. It is found that CNMs retain their structure after high-temperature sintering. The maximum increase in fracture toughness from 4.0 MPa·m1/2 to 5.5 MPa·m 1/2 is found for a composite with SWCNTs. However, GNPs seem more effective as reinforcement than SWCNTs and MWCNTs, because the ZrO2 /GNP composite has an increased density (99.4%) and fracture toughness (5.2 MPa·m1/2 ) compared to ZrO2 ceramics and in addition, the microhardness is not so much reduced in comparison with the ZrO2 /SWCNT composite. | ||
| 333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
| 463 | 0 | |0 (RuTPU)RU\TPU\network\34152 |t Energy Fluxes and Radiation Effects (EFRE-2020 online) |o proceedings of 7th International Congress, September 14-26, 2020, Tomsk, Russia |f National Research Tomsk Polytechnic University (TPU) ; Institute of Electrical and Electronics Engineers (IEEE) ; ed. N. A. Ratakhin |v [P. 1169-1173] |d 2020 | |
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a zirconia composite | |
| 610 | 1 | |a carbon nanotubes | |
| 610 | 1 | |a graphene | |
| 610 | 1 | |a mechanical properties | |
| 610 | 1 | |a композиты | |
| 610 | 1 | |a диоксид циркония | |
| 610 | 1 | |a углеродные нанотрубки | |
| 610 | 1 | |a графены | |
| 610 | 1 | |a механические свойства | |
| 701 | 1 | |a Leonov |b A. A. |c Specialist in the field of material science |c Specialist in educational and methodical work of Tomsk Polytechnic University |f 1991- |g Andrey Andreevich |3 (RuTPU)RU\TPU\pers\38521 |9 20811 | |
| 701 | 1 | |a Kalashnikov |b M. P. |c physicist |c Engineer of Tomsk Polytechnic University |g Mark Petrovich |3 (RuTPU)RU\TPU\pers\33561 | |
| 701 | 0 | |a Jing Li | |
| 701 | 1 | |a Abdulmenova |b E. V. |c Specialist in the field of material science |c Engineer of Tomsk Polytechnic University |f 1993- |g Ekaterina Vladimirovna |3 (RuTPU)RU\TPU\pers\45719 | |
| 701 | 1 | |a Rudmin |b M. A. |c geologist |c Associate Professor of Tomsk Polytechnic University, Candidate of Geological and Mineralogical Sciences |f 1989- |g Maksim Andreevich |3 (RuTPU)RU\TPU\pers\33254 |9 16999 | |
| 701 | 1 | |a Ivanov |b Yu. F. |c physicist |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences |f 1955- |g Yuriy Fedorovich |3 (RuTPU)RU\TPU\pers\33559 | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |b Инженерная школа энергетики |b Отделение электроэнергетики и электротехники |3 (RuTPU)RU\TPU\col\23505 |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |b Инженерная школа новых производственных технологий |b Отделение материаловедения |3 (RuTPU)RU\TPU\col\23508 |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |b Инженерная школа природных ресурсов |b Отделение геологии |3 (RuTPU)RU\TPU\col\23542 |
| 801 | 2 | |a RU |b 63413507 |c 20210203 |g RCR | |
| 856 | 4 | |u https://doi.org/10.1109/EFRE47760.2020.9242000 | |
| 942 | |c CF | ||