Effect of Carbon Nanotubes and Graphene Nanoplatelets on the Mechanical Properties of Zirconia-Based Composites

Dades bibliogràfiques
Parent link:Energy Fluxes and Radiation Effects (EFRE-2020 online): proceedings of 7th International Congress, September 14-26, 2020, Tomsk, Russia/ National Research Tomsk Polytechnic University (TPU) ; Institute of Electrical and Electronics Engineers (IEEE) ; ed. N. A. Ratakhin. [P. 1169-1173].— , 2020
Autor corporatiu: Национальный исследовательский Томский политехнический университет Инженерная школа энергетики Отделение электроэнергетики и электротехники, Национальный исследовательский Томский политехнический университет Инженерная школа новых производственных технологий Отделение материаловедения, Национальный исследовательский Томский политехнический университет Инженерная школа природных ресурсов Отделение геологии
Altres autors: Leonov A. A. Andrey Andreevich, Kalashnikov M. P. Mark Petrovich, Jing Li, Abdulmenova E. V. Ekaterina Vladimirovna, Rudmin M. A. Maksim Andreevich, Ivanov Yu. F. Yuriy Fedorovich
Sumari:Title screen
In this work, ZrO2 composites reinforced by single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT) and graphene nanoplatelets (GNP) were investigated. Composites were prepared by spark plasma sintering at a temperature of 1500°C. The influence of various carbon nanomaterials (CNM) on the microstructure, densification, microhardness, fracture toughness and crack propagation of zirconia-based composites was investigated. It is found that CNMs retain their structure after high-temperature sintering. The maximum increase in fracture toughness from 4.0 MPa·m1/2 to 5.5 MPa·m 1/2 is found for a composite with SWCNTs. However, GNPs seem more effective as reinforcement than SWCNTs and MWCNTs, because the ZrO2 /GNP composite has an increased density (99.4%) and fracture toughness (5.2 MPa·m1/2 ) compared to ZrO2 ceramics and in addition, the microhardness is not so much reduced in comparison with the ZrO2 /SWCNT composite.
Режим доступа: по договору с организацией-держателем ресурса
Idioma:anglès
Publicat: 2020
Matèries:
Accés en línia:https://doi.org/10.1109/EFRE47760.2020.9242000
Format: Electrònic Capítol de llibre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=663108

MARC

LEADER 00000naa2a2200000 4500
001 663108
005 20251216144947.0
035 |a (RuTPU)RU\TPU\network\34277 
035 |a RU\TPU\network\34267 
090 |a 663108 
100 |a 20210125d2020 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Effect of Carbon Nanotubes and Graphene Nanoplatelets on the Mechanical Properties of Zirconia-Based Composites  |f A. A. Leonov, M. P. Kalashnikov, Jing Li [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 1172-1173 (40 tit.)] 
330 |a In this work, ZrO2 composites reinforced by single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT) and graphene nanoplatelets (GNP) were investigated. Composites were prepared by spark plasma sintering at a temperature of 1500°C. The influence of various carbon nanomaterials (CNM) on the microstructure, densification, microhardness, fracture toughness and crack propagation of zirconia-based composites was investigated. It is found that CNMs retain their structure after high-temperature sintering. The maximum increase in fracture toughness from 4.0 MPa·m1/2 to 5.5 MPa·m 1/2 is found for a composite with SWCNTs. However, GNPs seem more effective as reinforcement than SWCNTs and MWCNTs, because the ZrO2 /GNP composite has an increased density (99.4%) and fracture toughness (5.2 MPa·m1/2 ) compared to ZrO2 ceramics and in addition, the microhardness is not so much reduced in comparison with the ZrO2 /SWCNT composite. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
463 0 |0 (RuTPU)RU\TPU\network\34152  |t Energy Fluxes and Radiation Effects (EFRE-2020 online)  |o proceedings of 7th International Congress, September 14-26, 2020, Tomsk, Russia  |f National Research Tomsk Polytechnic University (TPU) ; Institute of Electrical and Electronics Engineers (IEEE) ; ed. N. A. Ratakhin  |v [P. 1169-1173]  |d 2020 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a zirconia composite 
610 1 |a carbon nanotubes 
610 1 |a graphene 
610 1 |a mechanical properties 
610 1 |a композиты 
610 1 |a диоксид циркония 
610 1 |a углеродные нанотрубки 
610 1 |a графены 
610 1 |a механические свойства 
701 1 |a Leonov  |b A. A.  |c Specialist in the field of material science  |c Specialist in educational and methodical work of Tomsk Polytechnic University  |f 1991-  |g Andrey Andreevich  |3 (RuTPU)RU\TPU\pers\38521  |9 20811 
701 1 |a Kalashnikov  |b M. P.  |c physicist  |c Engineer of Tomsk Polytechnic University  |g Mark Petrovich  |3 (RuTPU)RU\TPU\pers\33561 
701 0 |a Jing Li 
701 1 |a Abdulmenova  |b E. V.  |c Specialist in the field of material science  |c Engineer of Tomsk Polytechnic University  |f 1993-  |g Ekaterina Vladimirovna  |3 (RuTPU)RU\TPU\pers\45719 
701 1 |a Rudmin  |b M. A.  |c geologist  |c Associate Professor of Tomsk Polytechnic University, Candidate of Geological and Mineralogical Sciences  |f 1989-  |g Maksim Andreevich  |3 (RuTPU)RU\TPU\pers\33254  |9 16999 
701 1 |a Ivanov  |b Yu. F.  |c physicist  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1955-  |g Yuriy Fedorovich  |3 (RuTPU)RU\TPU\pers\33559 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа энергетики  |b Отделение электроэнергетики и электротехники  |3 (RuTPU)RU\TPU\col\23505 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа новых производственных технологий  |b Отделение материаловедения  |3 (RuTPU)RU\TPU\col\23508 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа природных ресурсов  |b Отделение геологии  |3 (RuTPU)RU\TPU\col\23542 
801 2 |a RU  |b 63413507  |c 20210203  |g RCR 
856 4 |u https://doi.org/10.1109/EFRE47760.2020.9242000 
942 |c CF