Effect of van der Waals interactions on the adhesion strength at the interface of the hydroxyapatite–titanium biocomposite: a firstprinciples study
| Parent link: | RSC Advances Vol. 10, iss. 62.— 2020.— [P. 37800-37805] |
|---|---|
| Korporativna značnica: | |
| Drugi avtorji: | , , , |
| Izvleček: | Title screen Hydroxyapatite (HAP) is frequently used as biocompatible coating on Ti-based implants. In this context, the HAP-Ti adhesion is of crucial importance. Here, we report ab initio calculations to investigate the influence of Si incorporation into the amorphous calcium-phosphate (a-HAP) structure on the interfacial bonding mechanism between the a-HAP coating and an amorphous titanium dioxide (a-TiO2) substrate, contrasting two different density functionals: PBE-GGA, and DFT-D3, which are capable of describing the influence of the van der Waals (vdW) interactions. In particular, we discuss the effect of dispersion on the work of adhesion (Wad), equilibrium geometries, and charge density difference (CDD). We find that replacement of P by Si in a-HAP (a-Si-HAP) with the creation of OH vacancies as charge compensation results in a significant increase in the bond strength between the coating and substrate in the case of using the PBE-GGA functional. However, including the vdW interactions shows that these forces considerably contribute to the Wad. We show that the difference (Wad ? Wad(vdW)) is on average more than 1.1 J m?2 and 0.5 J m?2 for a-HAP/a-TiO2 and a-Si-HAP/a-TiO2, respectively. These results reveal that including vdW interactions is essential for accurately describing the chemical bonding at the a-HAP/a-TiO2 interface. Режим доступа: по договору с организацией-держателем ресурса |
| Jezik: | angleščina |
| Izdano: |
2020
|
| Teme: | |
| Online dostop: | https://doi.org/10.1039/D0RA06006B |
| Format: | Elektronski Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=662990 |
MARC
| LEADER | 00000naa0a2200000 4500 | ||
|---|---|---|---|
| 001 | 662990 | ||
| 005 | 20250421130344.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\34158 | ||
| 090 | |a 662990 | ||
| 100 | |a 20210119d2020 k||y0rusy50 ba | ||
| 101 | 0 | |a eng | |
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Effect of van der Waals interactions on the adhesion strength at the interface of the hydroxyapatite–titanium biocomposite: a firstprinciples study |f I. Yu. Grubova, M. A. Surmeneva, R. A. Surmenev, E. C. Neyts | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 320 | |a [References: 41 tit.] | ||
| 330 | |a Hydroxyapatite (HAP) is frequently used as biocompatible coating on Ti-based implants. In this context, the HAP-Ti adhesion is of crucial importance. Here, we report ab initio calculations to investigate the influence of Si incorporation into the amorphous calcium-phosphate (a-HAP) structure on the interfacial bonding mechanism between the a-HAP coating and an amorphous titanium dioxide (a-TiO2) substrate, contrasting two different density functionals: PBE-GGA, and DFT-D3, which are capable of describing the influence of the van der Waals (vdW) interactions. In particular, we discuss the effect of dispersion on the work of adhesion (Wad), equilibrium geometries, and charge density difference (CDD). We find that replacement of P by Si in a-HAP (a-Si-HAP) with the creation of OH vacancies as charge compensation results in a significant increase in the bond strength between the coating and substrate in the case of using the PBE-GGA functional. However, including the vdW interactions shows that these forces considerably contribute to the Wad. We show that the difference (Wad ? Wad(vdW)) is on average more than 1.1 J m?2 and 0.5 J m?2 for a-HAP/a-TiO2 and a-Si-HAP/a-TiO2, respectively. These results reveal that including vdW interactions is essential for accurately describing the chemical bonding at the a-HAP/a-TiO2 interface. | ||
| 333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
| 461 | |t RSC Advances | ||
| 463 | |t Vol. 10, iss. 62 |v [P. 37800-37805] |d 2020 | ||
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a гидроксиапатиты | |
| 610 | 1 | |a дисперсия | |
| 610 | 1 | |a покрытия | |
| 701 | 1 | |a Grubova |b I. Yu. |c physicist |c engineer-researcher of Tomsk Polytechnic Universit |f 1989- |g Irina Yurievna |3 (RuTPU)RU\TPU\pers\32674 |9 16573 | |
| 701 | 1 | |a Surmeneva |b M. A. |c specialist in the field of material science |c engineer-researcher of Tomsk Polytechnic University, Associate Scientist |f 1984- |g Maria Alexandrovna |3 (RuTPU)RU\TPU\pers\31894 |9 15966 | |
| 701 | 1 | |a Surmenev |b R. A. |c physicist |c Associate Professor of Tomsk Polytechnic University, Senior researcher, Candidate of physical and mathematical sciences |f 1982- |g Roman Anatolievich |3 (RuTPU)RU\TPU\pers\31885 |9 15957 | |
| 701 | 1 | |a Neyts |b E. C. |g Erik | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |b Исследовательская школа химических и биомедицинских технологий |c (2017- ) |3 (RuTPU)RU\TPU\col\23537 |
| 801 | 2 | |a RU |b 63413507 |c 20210119 |g RCR | |
| 850 | |a 63413507 | ||
| 856 | 4 | |u https://doi.org/10.1039/D0RA06006B | |
| 942 | |c CF | ||