Microstructure of titanium alloy modified by high-intensity implantation of low- and high-energy aluminium ions

Bibliographic Details
Parent link:Surface and Coatings Technology
Vol. 391.— 2020.— [125722, 6 p.]
Corporate Authors: Национальный исследовательский Томский политехнический университет Инженерная школа ядерных технологий Научная лаборатория высокоинтенсивной имплантации ионов, Национальный исследовательский Томский политехнический университет Инженерная школа новых производственных технологий Отделение материаловедения, Национальный исследовательский Томский политехнический университет Исследовательская школа физики высокоэнергетических процессов
Other Authors: Ryabchikov A. I. Aleksandr Ilyich, Sivin D. O. Denis Olegovich, Bozhko I. A. Irina Aleksandrovna, Stepanov I. B. Igor Borisovich, Shevelev A. E. Aleksey Eduardovich
Summary:Title screen
This study focuses on the analysis of microstructural, elemental and phase compositions of surface and near-surface layers of titanium after the implantation of aluminium. A titanium alloy with a chemical composition close to commercially pure titanium (grade 2) was used as the target material. Ion implantation was performed using two modes of irradiation: 1. repetitively pulsed ion beams with a mean ion energy of 35 keV; 2. low-energy-focused ion beams of high intensity with a mean ion energy of 2.6 keV. The irradiation fluence reached 1.1 Ч 1018 ion/cm2 using the first mode and 1.6 Ч 1021 ion/cm2 using the second mode. In both cases, the beam itself heated the targets. The peak concentration of aluminium after the implantation of medium-energy ions was ~65 at.%, and the maximum depth of dopant penetration was 2.6 µm. On the contrary, in the case of high-intensity low-energy ion implantation, the surface concentration of dopant reached a maximum of 25 at.%, but the depth of penetration increased significantly and achieved 50 µm. The results of X-ray diffraction (XRD) and transmission electron microscopy (TEM) showed that fine-grained intermetallic phases, Ti3Al and TiAl, and solid solutions of various compositions were possibly formed after the medium-energy ion implantation. The mean grain size of the intermetallic phases was ~50 nm. XRD and TEM analyses in the case of low-energy high-intensity ion implantation demonstrated the formation of the ion-alloyed layer, which comprised intermetallic phase Ti3Al and solid solutions of aluminium in titanium. The grain size of Ti3Al phase can be 5 µm and more.
Режим доступа: по договору с организацией-держателем ресурса
Language:English
Published: 2020
Subjects:
Online Access:https://doi.org/10.1016/j.surfcoat.2020.125722
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=662969

MARC

LEADER 00000naa0a2200000 4500
001 662969
005 20250418164539.0
035 |a (RuTPU)RU\TPU\network\34137 
090 |a 662969 
100 |a 20210118d2020 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Microstructure of titanium alloy modified by high-intensity implantation of low- and high-energy aluminium ions  |f A. I. Ryabchikov, D. O. Sivin, I. A. Bozhko [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 31 tit.] 
330 |a This study focuses on the analysis of microstructural, elemental and phase compositions of surface and near-surface layers of titanium after the implantation of aluminium. A titanium alloy with a chemical composition close to commercially pure titanium (grade 2) was used as the target material. Ion implantation was performed using two modes of irradiation: 1. repetitively pulsed ion beams with a mean ion energy of 35 keV; 2. low-energy-focused ion beams of high intensity with a mean ion energy of 2.6 keV. The irradiation fluence reached 1.1 Ч 1018 ion/cm2 using the first mode and 1.6 Ч 1021 ion/cm2 using the second mode. In both cases, the beam itself heated the targets. The peak concentration of aluminium after the implantation of medium-energy ions was ~65 at.%, and the maximum depth of dopant penetration was 2.6 µm. On the contrary, in the case of high-intensity low-energy ion implantation, the surface concentration of dopant reached a maximum of 25 at.%, but the depth of penetration increased significantly and achieved 50 µm. The results of X-ray diffraction (XRD) and transmission electron microscopy (TEM) showed that fine-grained intermetallic phases, Ti3Al and TiAl, and solid solutions of various compositions were possibly formed after the medium-energy ion implantation. The mean grain size of the intermetallic phases was ~50 nm. XRD and TEM analyses in the case of low-energy high-intensity ion implantation demonstrated the formation of the ion-alloyed layer, which comprised intermetallic phase Ti3Al and solid solutions of aluminium in titanium. The grain size of Ti3Al phase can be 5 µm and more. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Surface and Coatings Technology 
463 |t Vol. 391  |v [125722, 6 p.]  |d 2020 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a high-intensity ion implantation 
610 1 |a aluminium 
610 1 |a titanium alloy 
610 1 |a intermetallic phase 
610 1 |a solid solution 
610 1 |a ионная имплантация 
610 1 |a алюминий 
610 1 |a титановые сплавы 
610 1 |a твердые растворы 
701 1 |a Ryabchikov  |b A. I.  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |c physicist  |f 1950-  |g Aleksandr Ilyich  |3 (RuTPU)RU\TPU\pers\30912  |9 15150 
701 1 |a Sivin  |b D. O.  |c physicist  |c Senior researcher of Tomsk Polytechnic University, Candidate of technical sciences  |f 1978-  |g Denis Olegovich  |3 (RuTPU)RU\TPU\pers\34240  |9 17771 
701 1 |a Bozhko  |b I. A.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences  |f 1980-  |g Irina Aleksandrovna  |3 (RuTPU)RU\TPU\pers\34206  |9 17740 
701 1 |a Stepanov  |b I. B.  |c physicist  |c Head of the laboratory of Tomsk Polytechnic University, Doctor of technical sciences  |f 1968-  |g Igor Borisovich  |3 (RuTPU)RU\TPU\pers\34218 
701 1 |a Shevelev  |b A. E.  |c Physicist  |c Engineer of Tomsk Polytechnic University  |f 1990-  |g Aleksey Eduardovich  |3 (RuTPU)RU\TPU\pers\36832 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа ядерных технологий  |b Научная лаборатория высокоинтенсивной имплантации ионов  |3 (RuTPU)RU\TPU\col\23698 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа новых производственных технологий  |b Отделение материаловедения  |3 (RuTPU)RU\TPU\col\23508 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа физики высокоэнергетических процессов  |c (2017- )  |3 (RuTPU)RU\TPU\col\23551 
801 2 |a RU  |b 63413507  |c 20210118  |g RCR 
850 |a 63413507 
856 4 |u https://doi.org/10.1016/j.surfcoat.2020.125722 
942 |c CF